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Streszczenie 

Badminton uchodzi za najszybszy sport na świecie. Podczas meczu badmintona lotka  w 

momencie uderzenia może poruszać się z prędkością przekraczającą 400 km/h [1, 2]. Aktualny 

rekord prędkości zarejestrowany przez firmę Yonex (producent sprzętu do badmintona) w 

kontrolowanym środowisku w dniu 14 kwietnia 2023 wynosi aż 565 km/h [3] i jest lepszy od 

poprzedniego z 2013 roku o 72 km/h [4]. Choć po samym uderzeniu lotka gwałtownie zwalnia, 

w momencie upadku na ziemię jej prędkość jest na tyle wysoka, że ludzkie oko nie jest w stanie 

dokładnie określić miejsca odbicia lotki od podłoża. Skutkuje to dość częstymi pomyłkami 

sędziowskimi – około 20%-24% decyzji sędziów jest błędna [5, 6], co prowadzi do wielu 

realnych problemów, m.in. niesprawiedliwych werdyktów sędziowskich wypaczających 

przebieg zawodów, przedłużających się kontrowersji, czy dyskusji uderzających w 

atrakcyjność rozgrywek. Główną motywacją realizowanych badań było opracowanie narzędzia 

wspomagającego, które usprawniłoby pracę sędziów liniowych – ograniczając liczbę ich 

błędnych decyzji, zwiększając klarowność analizy i przyspieszając konsensus w przypadkach 

wątpliwych przez obiektywizację dokonywanych ocen. 

Zasadniczym osiągnięciem przedstawionym w niniejszej rozprawie jest oryginalne rozwiązanie 

w zakresie zastosowania wyników własnych badań naukowych w sferze gospodarczej, 

polegające na konstrukcji efektywnego modelu zachowań upadającej lotki względem linii 

referencyjnych, pozwalającego ustalić i zinterpretować miejsce upadku lotki przy możliwie 

dużej odporności na różnorodne, praktyczne zakłócenia i realistycznie zmieniające się 

uwarunkowania pomiarowe. Uzyskane wyniki własnych badań naukowych zostały 

zweryfikowane względem realnych zastosowań w sferze gospodarczej. Przeprowadzone w 

okresie kilku lat badania, oraz prace wdrożeniowe, które przedstawiono w niniejszej rozprawie, 

skutkowały opracowaniem i zaimplementowaniem praktycznego, komercyjnego systemu, 

który w warunkach realnych rozgrywek skutecznie wspomaga sędziów zawodów 

badmintonowych w ocenie miejsca upadku lotki i podjęciu kluczowej decyzji: „ w korcie” lub 

„ aut”. Unikalnym pomysłem odróżniającym badania autora od znanych z literatury [7,8,9,10] 

jest wyznaczenie momentu i miejsca upadku lotki w stosunku do linii kortu z wykorzystaniem 

układu pomiarowego, w którym każda z kamer obserwuje swoją przestrzeń (określoną linię 

kortu) a nie jak to jest w zazwyczaj spotykanych implementacjach, gdzie wiele kamer 

obserwuje tę samą przestrzeń (najczęściej cały kort). 

Niniejsza rozprawa została przygotowana w ramach doktoratu wdrożeniowego edycji III. 

Celem doktoratu wdrożeniowego określonym przez Ministerstwo Nauki i Szkolnictwa 
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Wyższego jest „rozwiązanie oryginalnego problemu naukowego oraz zagadnienia 

praktycznego, w taki sposób, aby powstałe rozwiązanie można było wdrożyć”. W związku z 

powyższym oprócz rozwiązań konkretnych problemów naukowych, w niniejszej rozprawie, 

przedstawiono również istotny aspekt praktyczny i biznesowy. Konkretne osiągnięcie naukowe 

zostało wdrożone w sferze gospodarczej – kompleksowy system wspomagania 

(wielokamerowy układ pomiarowy, strumieniowanie danych o dużej rozdzielczości czasowej, 

metody analizy i interpretacji wideo online, sugerowane decyzje wspierające pracę sędziów), 

opracowany wspólnie z drugim doktorantem, Jarosławem Nowiszem. System ten został 

zweryfikowany w praktyce podczas realnych zawodów sportowych, m.in. na Mistrzostwach 

Świata seniorów w Katowicach. Wyniki z systemu były prezentowane nie tylko sędziom, ale 

też wyświetlane na głównym ekranie w hali oraz podczas transmisji telewizyjnej. Zastosowane 

rozwiązanie całkowicie wyeliminowało wątpliwości zawodników dotyczące miejsca upadku 

lotki  – w polu gry czy poza nim. Widać to doskonale na zapisie transmisji wideo z tych 

zawodów, który jest dostępny w serwisie youtube.com. Linki do kluczowych momentów 

transmisji prezentujących efekt działania systemu są podane w referencji [11] oraz [12]. 

W ramach prac badawczych autor podjął samodzielnie następujące zagadnienia: 

- detekcja, segmentacja i śledzenie zachowań lotki (tj. niewielkich, szybko opadających 

obiektów o specyficznych cechach statycznych i dynamicznych) względem podłoża 

pokrytego liniami referencyjnymi na podstawie rejestrowanych online strumieni wideo, 

- wyznaczenie ramki kluczowej, najbliższej chwili upadku (odbicia lotki od kortu) celem 

precyzyjnej lokalizacji miejsca odbicia, 

- lokalizacja miejsca upadku (odbicia od podłoża) korka lotki względem referencyjnych 

linii kortu i określenie, czy w momencie odbicia lotka znajdowała się w polu gry czy 

poza nim, 

- opracowanie intuicyjnego oprogramowania dla sędziów umożliwiającego rzetelną 

weryfikację i uwiarygodnienie automatycznej podpowiedzi systemu oraz jej ewentualną 

korektę przed udostępnieniem wizualizacji miejsca upadku lotki kibicom i 

zawodnikom.  

Praca składa się z 5 rozdziałów. 

Rozdział 1 wprowadza czytelnika w tematykę problemu i zasadnicze uwarunkowania 

zewnętrzne oraz istotne ograniczenia mające wpływ na prowadzone badania. Przedstawiono w 

nim wagę problemu błędnych decyzji sędziów oraz uzasadniono potrzebę opracowania 
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technologicznego narzędzia wspomagającego sędziów zawodów sportowych. Wskazano 

główne osiągnięcie i cel prowadzonych badań. 

W rozdziale 2 dokonano przeglądu aktualnego stanu wiedzy i przedstawiono koncepcje i 

metody wspomagania decyzji sędziowskich. 

Rozdział 3 prezentuje zasadnicze osiągnięcie i opisuje opracowaną metodę. 

W rozdziale 4 opisano w jaki sposób zweryfikowano opracowaną metodę wraz z dyskusją 

uzyskanych wyników. 

Podsumowanie i wnioski przedstawiono w rozdziale 5. 

Słowa kluczowe: wizja komputerowa, sport, szybko poruszające się obiekty, detekcja obrazu, 

segmentacja małych obiektów na obrazie, wspomaganie decyzji sędziów liniowych, śledzenie 

i modelowanie ruchu obiektów, analiza i interpretacja obrazów 
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Abstract 

Badminton is the fastest sport in the world. A badminton shuttlecock can travel at initial speeds 

in excess of 400 km/h [1, 2]. The current Guiness world record (registered on April 14th 2023) 

is 565 km/h [3] which is better by 72 km/h than a previous record from 2013 [4]. After the 

impact it slows down sharply, but when it hits the ground the speed is so high that the line 

judges often cannot tell if the shuttlecock was in or out. This leads to refereeing errors - about 

20-24% of refereeing decisions are wrong [5, 6]. 

The research presented in this thesis was aimed at verifying whether it is possible to build a 

commercial system that in real conditions can help referees of badminton competitions in 

assessing the place of the shuttlecock fall – in or outside the court. 

This thesis was prepared as part of the third edition of the implementation doctorate. The 

purpose of the implementation doctorate, as defined by the Ministry of Science and Higher 

Education, is “to solve an original scientific problem and a practical problem in such a way that 

the resulting solution can be implemented”. Therefore, in addition to presenting scientific 

problems and their solutions, this thesis also addresses the practical and business aspects. 

A specific scientific achievement was implemented in the economic sphere - the comprehensive 

support system developed together with the second doctoral student - Jarosław Nowisz (multi-

camera measurement system, high-resolution time data streaming, online video analysis and 

interpretation methods, suggested decisions supporting the work of referees) was verified in 

practice during real sports competitions, in particular it was used in the Senior World 

Championships in Katowice. This can be seen perfectly in the video recording of the 

competition, which is available on youtube.com. Links to key moments of the broadcast 

presenting the effect of the system are provided in references [11] and [12]. 

As part of the research work, the following issues were undertaken: 

- Detection and tracking fast-moving objects. 

- Badminton shuttlecock segmentation. 

- Finding the frame in the video stream where the shuttlecock hit the ground. 

- Determining the position of the badminton shuttlecock cork in relation to the reference 

lines of the court and determining whether the shuttlecock was in or outside the playing 

field at the moment of the bounce. 
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- Developing easy-to-use control software for referees that allows for verification of the 

system's automatic decision. 

The work consists of 5 chapters. 

Chapter 1 introduces the reader to the subject of the problem and the main external conditions 

and significant limitations influencing the conducted research. It presents the importance of the 

problem of incorrect decisions of referees and justifies the need to develop a technological tool 

supporting referees of sports competitions. The main achievement and the aim of the conducted 

research are indicated. 

Chapter 2 reviews the current state of knowledge and presents concepts and methods of 

supporting referee decisions. 

Chapter 3 presents the main achievement and describes the developed method. 

Chapter 4 describes how the developed method was verified along with a discussion of the 

obtained results. 

A summary and conclusions are presented in Chapter 5. 

Keywords: computer vision, sport analysis, fast-moving objects, image detection, object 

segmentation 
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1. Wprowadzenie – technologiczne wspomaganie decyzji 

sędziowskich w sporcie 

1.1. Motywacja 

Zawodowy sport to ciężka praca, a sportowcy zarabiają głównie podczas  zawodów. Autor nie 

zna dyscypliny sportowej, w której nie byłoby sędziów podejmujących kluczowe dla 

zawodnika decyzje. Jeden błędny werdykt sędziego może zdecydować o tym, czy zawodnik 

wygra mecz i zagra w finale, czy też odpadnie na etapie półfinału. Przykładowo finalista 

tenisowego turnieju US Open 2024 otrzyma nagrodę przynajmniej w wysokości 1,8 mln USD, 

a półfinalista  – 1 mln. Można zaryzykować stwierdzenie, że pomyłka sędziego w kluczowym 

momencie meczu potencjalnie może „kosztować” 800 tys. dolarów. Choćby z tego powodu 

systemy wspomagania decyzji sędziowskich za pomocą obliczeniowych metod analizy i 

interpretacji bieżących zapisów wideo – od rozstrzygania klasycznego problemu „boisko czy 

aut”, przez precyzyjną detekcję spalonego w skoku w dal, po stwierdzenie kto jest pierwszy w 

biegu na 100 metrów – są kluczowe dla zawodników. 

Zgodnie z raportem IMARC Group [13] globalny rynek analizy sportów był wyceniony w 

2022r. na 1.1 miliarda dolarów, z czego 35% dotyczyło analizy wideo. W publikacji A 

Comprehensive Review of Computer Vision in Sports: Open Issues, Future Trends and 

Research Directions [14] autorzy dokonali przeglądu badań naukowych w dziedzinie analizy 

wideo z zawodów sportowych w wiodących czasopismach. W latach 2020-21 pojawiło się 77 

publikacji (wzrost z 66 w latach 2018-19) poruszających ten temat. Najwięcej publikacji 

dotyczyło piłki nożnej – 26%, zaś badmintona – 4%. 

Autor regularnie gra w badmintona i startuje w turniejach amatorskich i seniorskich. Biorąc 

udział w zawodach niejednokrotnie nie zgadzał się z decyzją sędziego, ale musiał ją uszanować, 

ponieważ nie było żadnego obiektywnego narzędzia pozwalającego na zweryfikowanie 

podjętej przez sędziego decyzji. Czasami podczas zawodów amatorskich, gdy nie ma sędziów, 

to inni zawodnicy sędziują nawzajem swoje mecze. Wbrew pozorom nie jest to proste i 

niejednokrotnie, gdy zadaniem autora było sędziowanie meczu, nie miał pewności, czy było 

boisko, czy aut, a nawet zdarzały się sytuacje, gdy dwie osoby obserwujące lotkę upadającą na 

kort nie mogły się zgodzić, czy lotka upadła w polu, czy nie. Dlatego też, wzorem innych 

dyscyplin, takich jak siatkówka czy tenis, autor postanowił rozpocząć badania nad systemem 

wspomagającym decyzje sędziowskie  – by uniknąć subiektywnych ludzkich pomyłek, 

wynikających przede wszystkim z ograniczonych ludzkich zdolności percepcji ruchu 
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upadającej lotki. Mniejsza liczba publikacji naukowych dotyczących badmintona niż, na 

przykład, piłki nożnej czy tenisa spowodowana jest tym, że nagrody pieniężne w badmintonie 

są dużo niższe niż w wymienionych dyscyplinach. Największe turnieje badmintona mają pulę 

nagród do 2 mln dolarów, a tenisowe nawet 75 mln. Warto nadmienić, że w wielu sportach gra 

się piłką (będącą kulą), dzięki czemu ten sam model zachowania odbitej lub rzuconej piłki 

można zastosować w różnych konkurencjach. Niestety ze względu na kształt lotki teoretyczne 

modele mają ograniczoną praktyczną skuteczność, ponieważ nie uwzględniają wszystkich 

zmiennych. Na zachowanie lotki uderzanej z różną siłą za pomocą różnych technik ma wpływ 

nie tylko niepowtarzalna jej konstrukcja, ale też zmieniające się intensywnie w czasie jej 

właściwości (pióra lotki ulegają uszkodzeniu podczas gry) oraz uwarunkowania zewnętrzne 

(temperatura i wilgotność powietrza zależna od miejsca rozgrywania zawodów, wpływ 

klimatyzacji na tor lotu lotki etc.) W publikacjach [15, 16] autorzy stworzyli modele zachowań 

lotki, ale nie uwzględnili wspomnianych uwarunkowań, ponieważ testowali swoje modele w 

warunkach laboratoryjnych. Podjęta przez autora próba zastosowania tych modeli w warunkach 

rzeczywistych okazała się porażką. Zaobserwowane miejsce upadku lotki w stosunku do 

wyznaczonego przez modele ze wspomnianych publikacji zgadzało się tylko wtedy, gdy 

testowanym uderzeniem był długi serwis (lift) – czyli uderzenie do góry na koniec kortu. W 

badmintonie istnieje szereg różnych zagrań, po których lotka porusza się po różnych 

trajektoriach. Poniżej - [Rysunek 1] przedstawiono różne typy uderzeń lotki i ich typowe 

trajektorie. W rzeczywistości dwie trajektorie lotki uderzonej z taką samą prędkością 

początkową i pod tym samym kątem mogą się istotnie różnić. Duże znaczenie ma to, czy 

zawodnik podczas uderzania lotki ją podciął, a jeśli tak, to od której strony, a nawet czy jest 

leworęczny, czy praworęczny. Podcięcie ma istotny wpływ na trajektorię, ponieważ zwiększa 

lub zmniejsza ruch wirowy lotki (pióra w lotce nachodzą na siebie, więc swobodnie puszczona 

lotka wiruje zawsze w tę samą stronę). Wstępne próby poprawy tych modeli względem 

praktycznych kryteriów interpretacyjnych (ocena poprawności zagrań kończących) nie 

przyniosły spodziewanych efektów. 
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Rysunek 1 Różne typy uderzeń i ich trajektorie:. (1) serve, (2) drop, (3) smash, (4) clear, (5) lift, (6) drive, (7) block, (8) net 

kill, (9) net shot 1 

Z badań własnych wynikło, że efektywniejsze, szczególnie w kontekście wspomagania decyzji 

sędziowskich, są badania śledzące ostatnią fazę lotu lotki tuż nad kortem. Zdecydowano się 

więc na eksplorację problemów naukowych właściwie nieporuszanych nigdy wcześniej, tj. 

szybką analizę i interpretację wielu strumieni wideo z dobranej lokalnie przestrzeni obserwacji 

upadającej lotki. Wykorzystano przede wszystkim kryteria pragmatyczne (przepisy gry, formy 

oceny sędziowskiej, zróżnicowanie możliwych interpretacji, realistyczne uwarunkowania 

przestrzenno‑czasowe zawodów, możliwe fluktuacje infrastruktury teleinformatycznej, 

dyskusje problemów sędziowskich, doświadczenia zawodników etc.). System pomiarowy i 

formy analizy doskonalono przez kilka lat z wykorzystaniem przede wszystkim kryteriów 

pragmatycznych, uwzględniających np. koszty sprzętu, istniejące ograniczenia w 

możliwościach rozmieszenia kamer, przepustowości kabli, możliwości zrównoleglenia 

obliczeń czy poprawy rozdzielczości dokonywanych online analiz, zakłócenia powodowane 

złym oświetleniem, przemieszczaniem się kibiców czy też kamerzystów. Te długotrwałe, 

prowadzone w różnych realiach badania pozwoliły uzyskać dużą niezawodność systemu i 

przede wszystkim jego użyteczność w bardzo zróżnicowanych warunkach realnych zawodów 

badmintonowych. 

Aktualnie na rynku istnieje jeden system komercyjny (Hawk-Eye, Sony)[17], który wspomaga 

sędziów badmintonowych. Niestety jest on bardzo drogi, w związku z czym wykorzystuje się 

go tylko na największych turniejach badmintonowych (takich z pulą nagród powyżej 500 tys. 

 
1 Źródło rysunku: https://www.researchgate.net/figure/Illustration-of-different-stroke-types-The-trajectories-of-1-

serve-2-drop-3_fig2_360647085. Autor: Ning Ding 
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USD), których jest kilkanaście w roku. Firma Sony nie udostępnia publicznie wyników swoich 

badań. 

Sięgając po naukowe narzędzia i koncepcje, autor myślał przede wszystkim o praktycznych 

kryteriach ich weryfikacji. Wybierał takie rozwiązania, które nie będą wymagały bardzo 

drogiego sprzętu i dużych kosztów montażu czy też transportu. 

1.2. Opis problemu 

 

Rysunek 2 Wizualizacja miejsca upadku lotki wygenerowana przez opracowany system zaprezentowana podczas turnieju w 

Katowicach 2 

Podczas meczu badmintona sędziowie liniowi, siedzący na wprost linii ograniczających pole 

gry, obserwują linie i sygnalizują głównemu sędziemu, czy lotka upadła w polu gry, czy poza 

nim. W zależności od rodzaju uderzenia prędkość lotki tuż przed odbiciem o ziemię może 

wynieść: 

• 29,8 m/s dla uderzeń smash –  uderzonych z prędkością początkową 85 m/s po dystansie 

5 m,  

• 11,8m/s dla uderzeń smash  – uderzonych z prędkością początkową 85 m/s po dystansie 

9 m,  

• 6,7 m/s dla uderzeń high clear. [18, 19] (dla tego rodzaju uderzeń lotka przy podłożu 

osiąga prędkość greniczną, bez względu na prędkość początkową uderzenia) 

Wśród graczy elity najczęściej uderzeniem kończącym jest smash – 54% [18]. Przy takich 

uderzeniach, dla których lotka upada bardzo blisko linii, sędziowie mają duży problem z 

ocenieniem, czy był aut, czy nie. Jedna błędna decyzja sędziego może decydować o wyniku 

meczu. Dzięki wspomagającym systemom komputerowym rezultat meczu częściej może być 

sprawiedliwy. Warto nadmienić, że zmęczenie sędziego wpływa na jego koncentrację i również 

może powodować błędną ocenę i przyczyniać się do pomyłek. Należy też zaznaczyć, że 

pojedyncze mrugnięcie okiem trwa od 15 do 400 m/s i szacuje się, że każdy z nas mruga co 

 
2 Żródło własne 



15 

około 6-20 razy na minutę [20] , więc sędzia możne po prostu nie dostrzec, w którym miejscu 

odbiła się lotka. 

Aby rozwiązać przedstawiony problem, należy rozwiązać szereg problemów badawczych oraz 

zagadnień praktycznych, które przedstawiono w niniejszej rozprawie. 

1. Dobór i testy sprzętu, w tym wybór kamer, jednostek obliczeniowych, peryferiów. 

2. Wyznaczenie możliwie optymalnego miejsca montażu kamer i pozostałego sprzętu na 

konkretnej hali. 

3. Kalibracja kamer z wykorzystaniem przenośnego stanowiska kalibracyjnego. 

4. Wyznaczenie maski pola gry dla obrazu z każdej kamery. 

5. Detekcja i śledzenie lotki w strumieniu wideo. 

6. Wyznaczenie kluczowej klatki wideo – zarejestrowanej najbliżej momentu upadku 

lotki na kort. 

7. Precyzyjne wyznaczenie pozycji korka lotki i miejsca odbicia lotki od podłoża w 

stosunku do referencyjnych linii kortu. 

8. Weryfikacja przez sędziego technicznego automatycznej podpowiedzi systemu. 

9. Prezentacja kibicom i zawodnikom animacji wizualizującej miejsce upadku lotki i 

decyzję in/out. 

Nad opracowaniem kompletnego systemu, którego efektem końcowym jest komputerowa 

animacja wizualizująca miejsce upadku lotki [Rysunek 2], [21] wraz z informacją, czy było 

pole, czy aut, autor pracował wraz z drugim doktorantem – Jarosławem Nowiszem. W 

niniejszej rozprawie opisano szczegółowo stworzone algorytmy i składowe systemu oraz 

badania, które autor prowadził samodzielnie  – punkty 5,6,7,8 z powyższej listy. O pozostałych 

składowych, które były realizowane samodzielnie przez J. Nowisza lub były realizowane 

wspólnie, wspomniano jedynie ogólnie, w taki sposób, aby czytelnik miał obraz całości 

rozwiązania.  

Aby powstałe rozwiązanie mogło zostać wdrożone komercyjnie, to musi ono spełniać 

następujące wymagania rynkowe: 

• dokładność systemu powinna być tak wysoka, jak to tylko możliwe, przy czym 

satysfakcjonującym rynek wynikiem jest dokładność wyznaczenia miejsca upadku lotki 

w stosunku do linii ograniczających pole gry z dokładnością poniżej 13 mm (połowa 

średnicy korka lotki do badmintona określona przepisami [22]); 

• system powinien działać w czasie rzeczywistym; 
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• ze względu na wymagania światowej federacji badmintona (BWF) system powinien 

zapewniać możliwość weryfikacji decyzji systemu przez sędziego technicznego na 

podstawie zapisu wideo. Procedura weryfikacyjna powinna być tak przygotowana, aby 

nie trwała dłużej niż 25 sekund; 

• czas potrzebny na instalację sprzętu w obiekcie, w którym odbywają się mecze, nie 

powinien przekroczyć 4 godzin na jeden kort przy udziale dwóch osób; 

• sprzęt wykorzystywany przez system powinien zajmować możliwie mało miejsca. 

Idealnie, jeśli będzie możliwe wysłanie sprzętu jedną przesyłką paletową (Paleta EURO 

o wymiarach 120 x 80cm); 

• koszt urządzeń i peryferiów koniecznych do sprawnego działania systemu powinien być 

możliwie niski w stosunku do merytorycznych wymagań użytkowych. 

W rozprawie wspomniano również o wyzwaniach operacyjnych i technicznych, a także 

ograniczeniach, które nie są bez znaczenia przy opracowaniu użytecznego i możliwego do 

wdrożenia na rynku rozwiązania. Są to w szczególności: 

• ograniczenia czasowe związane z instalacją systemu w hali, 

• ograniczenia transportowe związane z wielkością i wagą sprzętu, 

• ograniczenia związane ze środowiskiem zewnętrznym – oświetlenie w hali, brak 

miejsca pomiędzy kortami, 

• ograniczenia finansowe  – wybór odpowiedniego sprzętu (kamery, okablowanie, 

komputery i peryferia), 

• integracja z systemem live3 scoring i live streaming4. 

1.3. Cel badań i główne osiągnięcie 

Celem badań jest rozwiązanie realnego problemu wspomagania decyzji sędziów liniowych 

dotyczących oceny skuteczności poszczególnych zagrań kończących w czasie meczów 

badmintona przez weryfikację miejsca upadku lotki. Głównym osiągnięciem autora jest 

opracowanie skutecznej metody weryfikacji realnego miejsca upadku lotki względem linii 

referencyjnych, służącej wspomaganiu decyzji sędziowskiej(w boisku lub aut), która znalazła 

zastosowanie w kompleksowym systemie wspomagania kluczowych decyzji sędziowskich 

dotyczących zawodów sportowych gry w badmintona. Eksperymentalnie potwierdzono realne 

 
3 Live scoring system. Oprogramowanie prezentujące aktualny wynik meczu na elektronicznej tablicy wyników 

oraz podczas telewizyjnej transmisji wideo 
4 Live streaming system. Oprogramowanie służące do transmisji wideo w czasie rzeczywistym w Internecie. W 

szczególności w serwisach takich jak youtube czy facebook 
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zmniejszenie liczby pomyłek sędziowskich o 20%, co uznano za znaczącą korzyść użytkową o 

istotnych walorach komercyjnych. 

Nowatorstwo i oryginalność zaproponowanego systemu wyrażają się przede wszystkim w 

kompleksowości realizacji  – od projektu i realizacji systemu akwizycji, przez wyniki 

konkretnych analiz i interpretacji obliczeniowych, aż po konkretną formę wspomagania decyzji 

sędziowskich w realiach prowadzonych zawodów sportowych. 

W ramach wykonanych prac badawczo-wdrożeniowych zrealizowano następujące główne cele 

naukowe i aplikacyjne: 

• Opracowanie skutecznej metody lokalizacji miejsca upadku lotki względem pola gry na 

podstawie wielostrumieniowego zapisu wideo, pozyskanego za pomocą 

zoptymalizowanej metody pomiarowej (zapis w określonej geometrii przestrzennej 

dostosowanej adaptacyjnie do różnorodnych uwarunkowań realnych kortów i hal 

sportowych) będącej w zgodzie z odpowiednimi przepisami [22]. 

• Eksperymentalna weryfikacja skuteczności i przydatności opracowanego systemu 

wspomagania w zróżnicowanych warunkach rzeczywistych. 

• Opracowanie stabilnego oprogramowania działającego w czasie rzeczywistym, które w 

wyniku prezentuje miejsce upadku lotki w stosunku do linii kortu. 

Realizacja tych działań skutkowała opracowaniem wiarygodnej metody możliwie precyzyjnej 

detekcji miejsca upadku lotki na podstawie analizy obrazów z kamer ustawionych w określonej 

konfiguracji przy korcie do gry w badmintona. Dokładność detekcji jest wystarczająca do:  

a) skutecznego wspomagania decyzji sędziowskich w przypadkach wątpliwych lub 

krytycznych,  

b) wiarygodnego potwierdzania autu lub jego braku w przypadkach klarownych na 

zasadzie kontroli lub korekcji pomyłek ludzkich,  

c) automatycznego obliczania statystyk z poprawności pierwotnych decyzji sędziów 

liniowych. 

1.4. Istotne uwarunkowania prowadzonych badań 

Poniżej zostały opisane zewnętrzne ograniczenia mające wpływ na badania i podjęte przez 

autora kluczowe decyzje. Opisano również, w sposób ogólny inne problemy, które musiały 

zostać rozwiązane, aby opracować kompleksowe rozwiązanie komercyjne, a które wykraczają 

poza badania autora opisane w niniejszej rozprawie. 



18 

Układ pomiarowy uwzględniający ograniczone możliwości obserwacyjne 

Przed przystąpieniem do zbierania danych konieczne było wybranie odpowiedniego sprzętu. 

Mając na uwadze komercjalizacje tworzonego rozwiązania, autor przy wyborze sprzętu 

pomiarowego i obliczeniowego, kierował się również aspektem ekonomicznym. W związku z 

tym zaprojektowano taki układ pomiarowy, który zapewniał możliwie wysoką dokładność przy 

założonych ograniczeniach finansowych. 

Dokładność systemu w dużym stopniu zależy od parametrów kamery rejestrującej obraz –   

głównie rozdzielczości przestrzennej oraz liczby klatek na sekundę (FPS ang. frames per 

second). Te dwa parametry determinują ilość danych, które kamera przesyła poprzez interfejs 

komunikacyjny. Wspomniane parametry kamery są też najważniejsze z punktu widzenia 

prowadzonych przez autora badań. Im wyższa liczba klatek na sekundę tym mniejsze rozmycie 

poruszającej się lotki oraz precyzyjniej można wyznaczyć moment odbicia lotki od podłoża. Z 

eksperymentów przeprowadzonych przez autora wynika, że aby osiągnąć zadowalające 

rezultaty należy rejestrować wideo z prędkością 150 klatek na sekundę lub wyższą. Natomiast 

bardziej szczegółowa treść obrazów pozwala na precyzyjniejsze wyznaczenie pozycji korka 

lotki w stosunku do referencyjnych linii kortu. 

Dzisiejsze kamery oferują rozdzielczość 2832 px × 2840 px przy 190 FPS z interfejsem 

CoaXPress 2.0 (2× CXP-12). Producenci sensorów oferują sensory nawet o wyższych 

rozdzielczościach, ale ze względu na ograniczenia przepustowości interfejsu komunikacyjnego 

nie jest możliwe skonstruowanie kamery o maksymalnie wysokiej rozdzielczości oferowanej 

przez producentów sensorów i maksymalnie możliwej liczbie klatek na sekundę. 

Istnieją cztery główne interfejsy [Tabela 1]: GigE, CoaXPress, USB i CameraLink do 

przesyłania danych z kamer. Jakakolwiek komunikacja z kamerami za pomocą WiFi lub innej 

technologii radiowej nie jest możliwa w zatłoczonych i podatnych na zakłócenia miejscach, 

takich jak hale sportowe, dlatego jedyną opcją są kable.  

Standard interfejsu Maksymalna długość kabla (m) Przepustowość (Gbps) 

CoaXPress 2.0 35-100 3.125-12.5 

CameraLink 5 -10 2 (4 przy użyciu 2 kabli) 

USB 3.0 3 5 

GigE 100 1-10 

Tabela 1 Główne rodzaje interfejsów kamer 

Autor do rejestracji wideo użył szaroodcieniowych kamer o rozdzielczości 800 × 600 pikseli, 

pracujących z maksymalną prędkością 240 klatek na sekundę. Ze względu na spore odległości 

kamer od komputerów przetwarzających z nich obraz (w zależności od warunków panujących 
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w hali sięgających nawet kilkudziesięciu metrów) wybrano kamery z interfejsem GigE. 

Dodatkowo dzięki możliwości zasilania kamer poprzez kabel ethernetowy (Power Over 

Ethernet) ogranicza się do jednego przewodu liczbę przewodów podłączonych do jednej 

kamery. 

Kiedy kilka lat temu autor zaczynał pracę nad systemem, rynek nie oferował w sprzętu o dużo 

lepszych parametrach. Dzisiaj alternatywą dla wybranych wtedy kamer byłyby kamery z 

interfejsem CoaXPress. Warto jednak nadmienić, że układ pomiarowy wykorzystujący kamery 

z interfejsem CoaXPress byłby kilkukrotnie droższy. Dużo droższe są kable oraz karty do 

akwizycji obrazu instalowane w komputerach. 

Wspomniana rozdzielczość okazała się wystarczająca, aby osiągnąć zadowalającą dokładność 

lokalizacji spadającej lotki przy umiarkowanych wymaganiach dotyczących złożoności 

obliczeniowej. 

Ilość danych przesyłanych z kamer i wydajność algorytmów wykrywających i śledzących lotkę 

określają niezbędną moc obliczeniową i liczbę komputerów. W przypadku wyższych 

rozdzielczości mamy więcej danych, co determinuje nam wyższą liczbę komputerów 

potrzebnych do ich przetworzenia (a co za tym idzie i podnosi koszty). 

Jeśli chodzi o ustawienie kamer w stosunku do kortu, z jakimi można się spotkać, to stosuje się 

główne 3 strategie, które wraz z zaletami i wadami przedstawiono w tabeli [Tabela 2]. 

Sposób rozmieszczenia 
kamer 

Zalety Wady 

Wiele kamer nad kortem. 
Każda kamera obejmuje w 
swoim polu widzenia cały 
kort.  

• Możliwe śledzenie pełnej 
trajektorii lotki w 3D. 

• Wyznaczenie momentu 
odbicia lotki o podłoże 
wprost ze współrzędnych 
3D lotki. 

• Możliwe zbieranie 
statystyk z przebiegu gry 
takich jak rodzaj uderzeń 
wygrywających, prędkość 
czy też kierunek 
uderzenia. 

• Wystarczy 6-9 kamer. 

• Konieczna precyzyjna 
synchronizacja kamer, kalibracja i 
wyznaczenie wzajemnej pozycji 
kamer w ustalonym układzie 
odniesienia. 

• Kłopotliwy i długotrwały montaż, 
często wymagający podnośników. 

• Potrzeba setek metrów kabli. 

• Może być konieczny montaż w 
miejscach dostępnych dla 
publiczności (np. na trybunach) 

• W przypadku awarii np.: 
odłączenia się kabla od kamery, 
naprawa usterki może być bardzo 
problematyczna. 

• Mniej precyzyjne wyznaczenie 
korka lotki (lotka jest stosunkowo 
mała na obrazie). 
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Kamery ustawione wokół 
kortu. Każda z kamer 
obserwuje określone linie 
kortu 

• Szybki i mało kłopotliwy 
montaż. Mniej kabli. 

• W przypadku awarii mało 
problematyczny serwis. 

• Nie jest konieczna 
synchronizacja kamer. 

• Można pominąć 
procedurę kalibracji 
kamer. 

• Duża lotka na obrazie 
pozwala na 
precyzyjniejsze 
wyznaczenie pozycji 
korka. 

• Aby były widoczne wszystkie linie 
potrzeba minimum 10 kamer. 
Zalecane 14. 

• Nie jest możliwa rejestracja pełnej 
trajektorii lotki w związku z czym 
nie jest możliwe zebranie wielu 
interesujących statystyk 
dotyczących przebiegu gry. 

• Bardziej skomplikowana 
procedura wyznaczenia momentu 
odbicia lotki o podłoże. 

Kamery nad kortem i 
wokół kortu 

• Możliwe śledzenie pełnej 
trajektorii lotki w 3D. 

• Precyzyjne wyznaczenie 
momentu odbicia lotki o 
podłoże. 

• Możliwe zbieranie 
statystyk z przebiegu gry 
takich jak rodzaj uderzeń, 
prędkość czy też kierunek 
uderzenia. 

• Duża lotka na obrazie z 
kamer przy korcie 
pozwala na 
precyzyjniejsze 
wyznaczenie pozycji 
korka. 

• Uszkodzenie jednej 
kamery nie musi 
powodować, że system 
przestaje działać. 

• Potrzeba największej liczby 
kamer. Przynajmniej 20. Oznacza 
też to najwyższy koszt takiego 
rozwiązania. 

• Konieczna precyzyjna 
synchronizacja kamer, kalibracja i 
wyznaczenie wzajemnej pozycji 
kamer w ustalonym układzie 
odniesienia. 

• Kłopotliwy i długotrwały montaż, 
często wymagający podnośników. 

• Potrzeba setek metrów kabli, a 
może nawet kilometrów. 

• Może być konieczny montaż w 
miejscach dostępnych dla 
publiczności (np. na trybunach). 

• W przypadku awarii np.: 
odłączenia się kabla od kamery 
znajdującej się nad kortem, 
naprawa usterki może być bardzo 
problematyczna. 

Tabela 2 Możliwe strategie rozmieszczenia kamer podczas zawodów wraz głównymi z zaletami i wadami 

Autor zdecydował się na umieszczenie 14 kamer wokół kortu głównie z powodu możliwości 

szybkiego montażu. Sposób rozmieszczenia kamer zaprezentowano na rysunku [Rysunek 3]. 
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Rysunek 3 Schemat i zdjęcie przedstawiające sposób rozmieszczenia 14 kamer wokół kortu 

Bardzo często wokół kortów ustawione są banery reklamowe. Determinuje to lokalizację (za 

banerami) i wysokość na jakiej muszą być umieszczone kamery (nad banerem). Wysokość 

banerów jest określona przepisami [23] i nie może być żadnych elementów stojących w 

odległości mniejszej niż 1.5 od linii kortu – w praktyce nic nie można umieścić przed banerami 

reklamowymi. Z tego też powodu autor nie testował ustawienia kamer tuż nad podłożem. 
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Wspomniane zalety zastosowanego przez autora układu pomiarowego powodują, że bardzo 

szybko można zmienić ustawienie kamer. Podczas dużych turniejów, często na mecze finałowe, 

pozostawia się tylko jeden kort główny, wokół którego jest więcej pustej przestrzeni niż 

podczas wcześniejszej fazy turnieju, patrz [Rysunek 4, Rysunek 5]. Zmiana ustawień kortów 

często jest dokonywana w nocy pomiędzy ostatnimi dniami turniejowymi. Oznacza to, że po 

rozłożeniu mat, na których grają zawodnicy, ma się tylko kilka godzin na instalację i testy 

systemu w nowych warunkach przestrzennych. 

 

Rysunek 4 Przykładowe rozmieszczenie kortów we wczesnej fazie turnieju. Mistrzostwa świata seniorów w Katowicach 

 

 

Rysunek 5 Pozostawiony jeden kort podczas fazy finałowej (Igrzyska olimpijskie, Londyn 2012, źródło Wikipedia) 



23 

Nie bez znaczenia jest też ilość sprzętu, który musi zostać przetransportowany, a następnie 

umieszczony w hali. Im mniej potrzeba sprzętu (kable, komputery, peryferia) tym lepiej. 

Mniejsze gabaryty i waga sprzętu oznaczają mniejsze koszty transportu. W naszym systemie 

do przetwarzania danych używa się 7 komputerów klasy PC. Każdy komputer przetwarza dane 

z dwóch kamer. 

Dynamiczne warunki pomiarowe 

Różne obiekty sportowe mają różne oświetlenie. Aby nagrywać wideo z prędkością ponad 150 

FPS, oświetlenie musi być wystarczająco silne. Problem ten nie występuje w tenisie (z 

wyłączeniem meczów wieczornych), gdzie zwykle mamy światło dzienne. 

Ważnym krokiem, który jest wykonywany podczas montażu kamer w hali jest dobranie 

możliwie najkrótszego, w zastanych warunkach oświetleniowych, czasu naświetlania sensora 

(w praktyce FPS kamery). Ocena, czy przy ustalonym czasie naświetlania obraz jest dobrze 

naświetlony dokonywana jest na podstawie analizy histogramu jasności pikseli zgodnie z 

metodą zaproponowaną przez Kuldeep Singh [24].  

Nawet w hali o najgorszych warunkach oświetleniowych udało się zarejestrować odpowiednio 

naświetlone obrazy z prędkością 150 klatek na sekundę, ale tylko w jednym miejscu 

zainstalowano wystarczająco mocne światła, aby nagrać wideo z prędkością 200 FPS. 

Opracowany przez autora algorytm detekcji lotki do badmintona wykorzystuje ramki 

różnicowe. Aby działał on poprawnie, to wymagane jest równomierne w czasie oświetlenie 

sceny. Niestety prąd zmienny, którym zasilane są lampy w halach powoduje ich migotanie (z 

częstotliwością 50 Hz). Na dziewięć odwiedzonych obiektów, w których organizowane są 

turnieje badmintona w Polsce, tylko jeden miał zainstalowane oświetlenie bez migotania. Na 

rysunku [Rysunek 6] przedstawiono przykładowe ramki różnicowe wygenerowane dla 

statycznej sceny przy migoczącym oświetleniu. 
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Rysunek 6 Przykładowe ramki różnicowe wygenerowane ze strumienia wideo zarejestrowanego z prędkością 190 klatek na 

sekundę w hali wyposażonej w migoczące oświetlenie 

Konieczne było zatem opracowanie efektywnej metody kompensującej ten efekt. Autor 

skorzystał z wyjątkowo efektywnej metody kompensującej efekt nierównomiernego 

oświetlenia sceny spowodowany migotaniem oświetlenia opracowanej przez pana Nowisza. 

Została ona szczegółowo opisana w publikacji, której autor jest współautorem - „A. Realtime 

flicker removal for fast video streaming and detection of moving objects” [25]. Metoda polega 

na adaptacyjnym generowaniu masek kompensujących efekt migotania na podstawie analizy 

zmienności jasności pikseli w czasie. Dla stacjonarnych kamer obliczany jest poziom 

podobieństwa każdego piksela do tego samego piksela z poprzedniej klatki. Jeśli piksel zmienił 

się z powodu lokalnego ruchu w scenie, poziom podobieństwa będzie niski, w przeciwnym 

razie wysoki. Jeśli poziomy podobieństwa są wyższe od adaptacyjnie wyznaczonej wartości 

progowej, to różnicę w jasności pomiędzy takimi pikselami wykorzystuje się do utworzenia 

maski kompensującej efekt migotania. Opracowana metoda jest 250–300 razy szybsza niż 

znane na rynku komercyjne rozwiązania takie jak DeFlicker [26] i FlickerFree [27]. 

Wyznaczenie maski pola gry dla obrazu z każdej kamery 

W swojej pracy badawczej autor nie zajmował się automatycznym wyznaczaniem pola gry. Dla 

każdej kamery maska pola, gry była wyznaczana ręcznie. Jednakże, automatyczne wyznaczenie 

pola gry jest korzystne z dwóch powodów: 

• Jest szybsze niż wyznaczane przez operatora. 
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• W przypadku delikatnego poruszenia kamery (np. w wyniku drgań podłoża) maska pola 

gry może być automatycznie skorygowana. 

Ten problem był badany dokładniej przez pana Nowisza, a rezultaty jego badań zostały 

opublikowane w naszym wspólnym artykule [6]. Metoda opracowana przez pana Nowisza 

polega na rozpoznaniu fragmentu kortu przez sieć neuronową (różne kamery widzą różne 

fragmenty kortu), a następnie na znalezieniu linii odpowiadających modelowi kortu wewnątrz 

maski wygenerowanej przez sieć neuronową. Ograniczenie obszaru, w którym szukane są linie 

tradycyjnymi metodami wizji komputerowej, znacząco zmniejsza liczbę analizowanych linii i 

pozwala automatycznie wybrać, te które są liniami kortu. 

Prezentacja animacji wizualizującej miejsce upadku lotki i decyzję in/out 

Wynik z systemu challenge5 jest prezentowany jako animacja komputerowa pokazująca 

miejsce odbicia piłki lub lotki. Taki sposób prezentacji ma jedną podstawową zaletę. 

Zawodnicy i kibice nie mają wątpliwości czy było pole czy aut - nawet jeśli decyzja systemu 

jest błędna (nie ma rozwiązań w 100% skutecznych). Autor zachęca czytelnika to obejrzenia 

na youtube dwóch fragmentów meczów badmintona podczas których wynik z opracowanego 

systemu był prezentowany publiczności [11] oraz telewidzom [12]. Na zdjęciach poniżej, 

zaprezentowano kluczowe momenty z tych dwóch filmów. 

 
5 Definicja podana w Słowniczek pojęć punkt 1 na stronie 93 
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Rysunek 7 Zawodnik podnosi rękę prosząc o weryfikację decyzji sędziego przez system challenge. Widoczny za kortem po 

lewej sędzia sygnalizuje wyciągniętą ręką swoją decyzję - IN 

 

Rysunek 8 Oczekiwanie na wynik z systemu (w tym czasie sędzia techniczny dodatkowo weryfikuje poprawność decyzji 

systemu) 
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Rysunek 9 Animacja lecącej lotki wyświetlona na wielkim ekranie pod kopułą hali w Katowickim Spodku 

 

Rysunek 10 Prezentacja lokalizacji miejsca upadku lotki w stosunku do linii kortu wraz z decyzją IN - w polu gry. W tym 

przypadku sędzia podjął prawidłową decyzję 
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Rysunek 11 Animacja lecącej lotki w kierunku linii końcowej prezentowana widzom podczas transmisji telewizyjnej (z innego 

meczu niż na wcześniejszych zdjęciach) 

 

Rysunek 12 Prezentacja telewizyjna lokalizacji miejsca upadku lotki w stosunku do linii (z prawej strony widoczne 

wjeżdżające logo turnieju, które pojawia się pomiędzy animacją z systemu challenge, a transmisją wideo z kamer 

telewizyjnych. 
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2. Powiązane prace i stan wiedzy 

2.1. Śledzenie i detekcja obiektów 

Śledzenie obiektów w sekwencji wideo jest jednym z głównych tematów widzenia 

komputerowego. Określenie zachowań (kluczowych cech) i dynamiki interesującego nas 

obiektu jest niezbędne w przypadku każdego problemu śledzenia obiektów. Śledzenie małych, 

szybko poruszających się obiektów, takich jak lotka do badmintona (o zmieniającym się 

kształcie i nieprzewidywalnym, nie dającym się opisać formalnie torze ruchu), jest dość 

specyficznym zagadnieniem śledzenia obiektów. Nie wszystkie metody, które sprawdzają się 

podczas śledzenia większych obiektów takich jak ludzie, zwierzęta, pojazdy można z 

powodzeniem zastosować do śledzenia lotki lub piłki [28]. Nie oznacza to, że przedstawiając 

aktualny stan wiedzy nie warto wspomnieć o uznanych metodach śledzenia obiektów. 

W zależności od badanego problemu, śledzenie obiektów można podzielić na dwie grupy: 

śledzenie pojedynczego obiektu (single object tracking) i śledzenie wielu obiektów (multi 

object tracking). W sporcie przykładem śledzenia pojedynczego obiektu może być śledzenie 

piłki, a wielu obiektów śledzenie piłkarzy podczas meczu piłki nożnej. 

W ogólności algorytmy, śledzące obiekt/obiekty można podzielić też ze względu na metody w 

nich stosowane: 

1. Zunifikowane metody śledzenia i wykrywania. 

Tego typu metody wykonują proces śledzenia i detekcji razem bez odrębnego detektora. 

Najczęściej te metody wymagają ręcznej inicjalizacji i mają stałą liczba obiektów w 

początkowej klatce. Następnie, obiekty te są lokalizowane i śledzone w kolejnych klatkach 

wideo. 

1.1. Metody bazujące na filtrach. 

Do tej kategorii można zakwalifikować przede wszystkim metody wykorzystujące filtr 

Kalmana [29] i filtry cząsteczkowe [30], czy też metody bazujące na śledzeniu jądra 

(Kernel Tracking) takie jak na przykład KFC [31]. Więcej informacji dotyczących tych 

metod znajduje się w tabeli [Tabela 3]. 

1.2. Metody bazujące na wyszukiwaniu. 

Metody bazujące na wyszukiwaniu próbują odkryć najlepszy ślad poruszającego się 

obiektu poprzez rozległe przeszukiwanie, ze szczególnym naciskiem na śledzenie 
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małych obiektów. Wśród takich metod można wskazać metodę z wykorzystaniem 

wielokrotnych hipotez - Multiple Hypothesis Testing (MHT) zaproponowaną przez 

Blosteina i innych [32], która na podstawie określonej sekwencji pomiarów wyznacza 

prawdopodobieństwo, że to właśnie szukany obiekt ją wywołał. Ta metoda działa przy 

założeniu, że wartości intensywności tła i szumu są niższe niż średnia intensywność 

śledzonego obiektu. Metoda wiąże ze sobą ścieżki ruchu obiektów i dane obserwacyjne 

na przestrzeni kilku ramek tworząc wiele hipotez śledzenia. Hipotezy te są tworzone i 

utrzymywane w ramach dynamicznie rosnącego zbioru możliwych ścieżek obiektów, 

ale nie wszystkie z nich są równie prawdopodobne. MHT używa różnych kryteriów 

oceny (np. prawdopodobieństwa Bayesa lub oceny dopasowania na podstawie filtru 

Kalmana) do przypisania prawdopodobieństw poszczególnym hipotezom. Z czasem 

niektóre ścieżki mogą być odrzucane, ponieważ stają się mało prawdopodobne, a inne 

mogą zyskiwać na pewności. Niestety ta metoda napotyka wyzwania podczas śledzenia 

szybko poruszających się obiektów, ponieważ obszar wyszukiwania rośnie 

wykładniczo. Zaletą tej metody jest możliwość rozpoczynania śledzenia dla nowych 

obiektów pojawiających się w kadrze i kończenia dla tych, które z kadru zniknęły. 

2. Metody śledzenia po detekcji (Track by detection) 

Pierwszą fazą tej metody jest lokalizacja śledzonych obiektów w pierwszej klatce. 

Kolejnym etapem jest modelowanie wyglądu śledzonego obiektu. Obiekt może ulec 

wizualnej transformacji z powodu zmiennych warunków oświetlenia, rozmycia ruchu, 

szumu obrazu, zmiany rozmiaru (gdy zbliża, lub oddala się od kamery), czy też z powodu 

rotacji. Ten etap ma na celu uchwycenie różnych cech i transformacji w celu poprawy 

niezawodności modelu. Obejmuje on konstruowanie opisów obiektów i modeli 

matematycznych w celu identyfikacji obiektów o zmiennym wyglądzie. 

Przykładowo, lotka do badmintona może bardzo różnie wyglądać [Rysunek 13]. 
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Rysunek 13 Przykładowy widok lotki (a) w trakcie lotu, (b) w momencie odbicia i (c) po odbiciu 

 

Ważnym etapem jest oszacowanie modelu ruchu. Taki model pozwala przewidzieć 

położenie obiektu na podstawie danych z poprzedniej/poprzednich klatek. Oszacowanie 

ruchu pozwala na określenie położenia obiektu w następnej, przyszłej klatce, a co za tym 

idzie ustaleniem współrzędnych obiektu i przewidywanego regionu obrazu, w którym z 

dużym prawdopodobieństwem może się znajdować śledzony obiekt. 

Metody z tej grupy dobrze radzą sobie z sytuacjami, gdy pojawia się nowy obiekt w scenie. 

Śledzenie po detekcji jest najbardziej popularną metodą, a większość badań mieści się w tej 

kategorii. Należy jednak pamiętać, że skuteczność tych metod w dużej mierze zależy od 

dokładności użytego detektora. Wielu naukowców zajmujących się śledzeniem obiektów w 

zapisach wideo z zawodów sportowych używa jako detektora sieci YOLO [10, 48, 49, 50]. 

2.1. Metody bazujące na usuwaniu tła 

Metody wykorzystujące ramki różnicowe i odejmowanie tła są popularne ze względu 

na swoją prostotę i wysoką wydajność oraz to, że dobrze sobie radzą w przypadku 

szybko poruszających się obiektów. Szczególnie często korzysta się z tych metod w 
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aplikacjach czasu rzeczywistego. Na przykład w publikacji [33] autorzy generują ramki 

różnicowe z dwóch kolejnych. Następnie wykrywają i śledzą piłkę tenisową oraz graczy 

na podstawie rozmiaru konturów na ramkach różnicowych. 

Zhu i inni [34] w celu wykrywania ruchomych obiektów (dronów) generują cztery 

obrazy. Różnicowy obraz nr 1 - O(1) generowany na podstawie różnicy klatek N i N+1, 

obraz nr 2 - O(2), który jest obrazem różnicowym pomiędzy klatką N+1 i N+2. Obraz 

O(3) generowany poprzez wykonanie logiczniej operacji AND na obrazie O(1) i O(2). 

Czwarty obraz O(4) uzyskiwany jest poprzez operację XOR pomiędzy O(2) i O(3). 

Ostatecznie obraz detekcji jest uzyskiwany poprzez wykonanie logicznej operacji AND 

na obrazach O(1) i O(4). Pozostały na obrazie szum jest usuwany poprzez operację 

erozji6 (ang. erode).  

W swojej pracy Yin, Q i pozostali [35] do detekcji poruszających się obiektów na 

filmach satelitarnych używają akumulacyjnych ramek różnicowych, a następnie za 

pomocą filtru trajektorii ruchu usuwają fałszywych kandydatów - takich, których 

trajektorie nie są zgodne modelem ruchu śledzonych obiektów. 

Natomiast Zhou, Y. i pozostali w swojej pracy [36] wskazują na wydajne i 

nienadzorowane podejście z wykorzystaniem konwolucyjnych sieci neuronowych. 

Stosują metodę usuwania tła w obrazowaniu ruchu szerokiego obszaru (WAMI). W 

pierwszym kroku dzięki usunięciu tła wyodrębnia się kandydatów o niskim kontraście. 

Kolejnym etapem jest usunięcie fałszywych kandydatów poprzez wytrenowaną 

konwolucyjną sieć neuronową uwzględniającą dane czasowe i przestrzenne.  

Wykorzystując jako detektor sieć Faster R-CNN [37] Aguilar, C. i inni [38] 

zaproponowali metodę śledzenia wielu obiektów na nagraniach wideo 

zarejestrowanych przez satelity, która na wejściu otrzymuje ramkę różnicową 

wygenerowaną na podstawie 3 kolejnych ramek. 

Autor w swoich badaniach skoncentrował się na eksplorowaniu metod właśnie z tej 

kategorii, ponieważ są wyjątkowo efektywne obliczeniowo, a układ pomiarowy 

(stacjonarne kamery) pozwala na ich zastosowanie w praktyce. 

 
6 Definicja wyjaśniona w Słowniczek pojęć punkt 2, strona 102 
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2.2. Metody klasyczne, z wykorzystaniem ekstrakcji cech – wykorzysujące różne metody 

przetwarzania obrazu w celu ekstrakcji kluczowych cech, a następnie klasyfikacji 

obiektów na podstawie tychże cech. 

Metody te wykorzystują algorytmy i techniki bazujące na modelach matematycznych i 

heurystyce. Najczęściej etap detekcji wykonywany jest dwuetapowo. W pierwszej 

kolejności dokonywana jest ekstrakcja cech, a następnie za pomocą jakiegoś 

klasyfikatora dany obszar obrazu przypisywany jest do określonej klasy. 

Do popularnych deskryptorów7 cech należą: 

• Histogram of Oriented Gradients (HOG) [39] – u podstaw tego deskryptora leży 

rozpoznawanie krawędzi na obrazie. Zakłada się, że lokalny wygląd i kształt 

obiektu na obrazie można opisać za pomocą rozkładu intensywności i kierunku 

gradientów. W celu wyznaczenia deskryptora obraz jest dzielony na małe 

sąsiadujące obszary zwane komórkami, a dla pikseli w każdej komórce obliczany 

jest histogram kierunków gradientu uwzględniający wartość gradientu. 

• Haar-like features [40]. Deskryptor bazujący na kilku rodzajach elementów 

strukturalnych (prostokątnych obszarów zwanych kernelami), za pomocą których 

rozpoznawane są charakterystyczne obszary na obrazie – linie, krawędzie, 

szachownice (four-rectangle), itp. 

• Scale-Invariant Features Transform (SIFT) [41]. Ideą tego deskryptora jest 

wyznaczenie kluczowych punktów dla szukanego obiektu oraz utworzenie 

wektora charakteryzującego każdy z nich. 

Powiedzmy, że chcemy znaleźć na obrazie piłkę tenisową. Wiadomo, że cechą piłki 

tenisowej jest kształt okręgu i kolor jaskrawozielony. Możemy wyznaczyć prosty 

deskryptor zawierający kolor i kształt. Metoda polegająca na wydobyciu z obrazu tych 

obszarów, w których piksele mają kolor jaskrawozielony i sprawdzeniu czy 

wyekstrahowany obszar ma kształt okręgu jest wyjątkowo prostą metodą detekcji, która 

w pewnych określonych przypadkach może być wystarczająco dobra. 

W zależności od problemu często konieczne jest opracowanie bardziej 

skomplikowanych modeli i metod. Na przykład, w swojej pracy [42] panowie Ahmadi, 

K.; Salari, E zaproponowali metodę składającą się z trzech etapów. W etapie pierwszym 

 
7 Patrz Słowniczek pojęć punkt 3, strona 102 
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dla każdej ramki generowane jest 6 podpasm wysokiej częstotliwości za pomocą 

transformacji falkowej Dual-Tree Complex Wavelet Transform (DT-CWT). Następnie 

potencjalni kandydaci wykrywani są przez detektor wykorzystującym adaptacyjny 

algorytm CFAR (Constant False Alarm Rate) służący do wykrywania szukanego 

obiektu na tle różnych zakłóceń. Ostatnim etapem jest klasyfikacja za pomocą SVM 

[43]. 

Filtr Kalmana [29] jest jednym z kluczowych elementów algorytmu śledzenia dronów 

opracowanego przez Son i in. [44]. Opracowane przez autorów metoda składa się z 

dwóch odrębnych trakerów (wykorzystujących przepływ ruchu, ang: motion flow, 

przepływ optyczny, ang: optical flow i histogram cech), predyktora (filtr Kalmana) i 

operacji udoskonalania. Pierwszy traker wykorzystuje model ruchu do identyfikacji 

poruszającego się obiektu, podczas gdy drugi wykorzystuje deskryptor na bazie 

histogramu cech kluczowych punktów. Następnie następuje porównanie histogramów 

obszarów zainteresowań z histogramem modelu i wybierany jest ten który jest 

najbardziej podobny. W kolejnym kroku położenie obiektu jest prognozowane za 

pomocą filtru Kalmana. Na koniec operacja udoskonalania jest wykorzystywana do 

ustalenia dokładnej lokalizacji obiektu. 

2.3. Metody wykorzystujące sieci neuronowe 

Głównym elementem metod z tej grupy jest sieć neuronowa, której zadaniem jest detekcja 

śledzonego obiektu. 

Aktualnie, większość badaczy koncentruje się na udoskonalaniu metod detekcji obiektów 

wykorzystujących sieci neuronowe. Przełomowym momentem, od którego nastąpił rozkwit 

badań nad sieciami neuronowymi był rok 2012 kiedy model konwolucyjnej sieci 

neuronowej AlexNet [45] zwyciężył w konkursie ImageNet [46]. 

Cechą odróżniającą metody wykorzystujące sieci neuronowe od metod klasycznych jest to, że 

modele bazujące na sztucznych sieciach neuronowych nie wymagają uprzedniego 

przetwarzania obrazu i ekstrakcji cech, aczkolwiek mogą być zasilane przetworzonymi 

unormowanymi obrazami. Aby można było dokonać detekcji obiektu trenuje się model w 

procesie uczenia głębokiego (deep learning), z wykorzystaniem zbioru treningowego 

zawierającego różnorodne, dobre jakościowo przykłady. Przygotowanie dobrego zbioru nie jest 

zadaniem trywialnym i bardzo czasochłonnym. Dlatego bardzo często do trenowania i 

ewaluacji modeli wykorzystuje się zbiory danych dostępne w Internecie. Często również w 
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procesie uczenia sieci wykorzystuje się z już nauczony model i dostraja się go do nowych 

realiów (transfer learning). Jednym z najpopularniejszych zbiorów danych jest baza ImageNet 

[47] zawierająca 14,197,122 zaanotowane obrazy. Podczas procesu uczenia obliczane są wagi, 

których liczba w zależności od modelu może sięgać wielu milionów. Im większa liczba wag 

tym większa liczba wzorców może być zamodelowana przez sieć. 

Niestety trening tak dużych modeli wymaga wysokowydajnego obliczeniowo i bardzo drogiego 

sprzętu. Dodatkowo pojawia się problem z wyjaśnialnością i interpretowalnością modelu. Przy 

tak skomplikowanych architekturach trudno jest precyzyjnie odpowiedzieć na pytanie dlaczego 

predykcja modelu była taka a nie inna. 

Ze względu na istotne ograniczenia czasowe – całkowity czas przetwarzania jednej klatki musi 

być krótszy niż 5 ms, oraz istotne ograniczenia finansowe, autor nie zdecydował się na 

dokładniejsze badanie metod śledzenia i detekcji korzystających z sieci neuronowych, 

ponieważ działały zbyt długo i opracował własny traker i detektor opisany w dalszej części 

rozprawy. W momencie, gdy autor rozpoczynał pracę nad systemem, przeanalizował 

benchmarki przedstawione przez innych badaczy [48, 49] z których wynikało, że czas inferencji 

dla badanych SOTA (State Of The Art) detektorów wynosił 51ms (Yolo v3), 100ms (Faster R-

CNN [37]) z wykorzystaniem GPU NVIDIA GeForce GTX TITAN X. 

Od tamtego czasu opracowano wiele nowych modeli sieci neuronowych oraz poprawiono moc 

obliczeniową kart graficznych. Aktualnie badacze podają możliwość uzyskania nawet 161 FPS 

dla modelu YOLOv7 [50] na karcie GPU NVIDIA Tesla V100. Jest to jednak ciągle 

nieznacznie dłużej niż 5ms. 

Jednym z najbardziej znanych konkursów śledzenia obiektów w strumieniu wideo jest VOT 

challenge [51] organizowany od 2013 r. Wszystkie nadesłane w 2024r na konkurs modele 

wykorzystywały sieci neuronowe, a analizując rezultaty, można zauważyć, że w pierwszej 

piątce aż 4 modele wykorzystują, jako jeden z głównych elementów nadesłanego rozwiązania, 

Segment Anything Model (SAM) [52], lub jego modyfikację HQ-SAM [53]. Autor również 

weryfikował możliwość wykorzystania SAM przy rozwiązaniu badanego problemu 

(segmentacji lotki), a swoje obserwacje opisał w rozdziale 3.4, podrozdział Porównanie 

zaproponowanej metody z Segment Anything Model (strona 118). 

Na uwagę zasługuje zwycięzca edycji 2024 - S3_Track [54], który uzyskał najwyższą wartość 

metryki według której były porównywane modele - Q (Tracking Quality) [55] co stanowi 

prawie 10% poprawę w porównaniu z drugim najlepszym modelem. S3_Track to jednoetapowy 
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traker, który śledzi wszystkie obiekty równocześnie. Składa się z modułu generowania cech 

uwzględniającego semantykę i modułu skojarzeń docelowych, który uwzględniające 

semantykę koreluje cechy z pikselami. Powstałe cechy korelacji są dekodowane do masek 

segmentacji. Ten model rozszerza model XMem [56]. Architektura modelu jest pokazana na 

rysunku [Rysunek 14]. Warto zauważyć, że w swojej architekturze zawiera moduł 

konwolucyjnej sieci neuronowej (architektura znana od 1989r.) i moduł wizualnego 

transformera [57] (Vision Transformer ViT), który jest stosunkowo nową architekturą (znaną 

od 2020r.). Model osiąga wydajność 8FPS z wykorzystaniem karty graficznej NVIDIA V100. 

 

Rysunek 14 Architektura modelu S3_track8 

 

W literaturze można się spotkać z wieloma metodami śledzenia obiektów. Poniżej 

przedstawiono wybrane metody, inne niż te wspomnianych wcześniej, wraz z ich wadami i 

zaletami. 

Filtr Kalmana [29] 

Filtr Kalmana, opracowany w 1960r., szacuje położenie obiektu i przewiduje jego ruch w 

kolejnej chwili czasowej na podstawie wewnętrznej reprezentacji stanu obiektu, w tym jego 

położenia, prędkości, a nawet przyspieszenia. 

Aby przewidzieć przyszły stan, filtr wykorzystuje informacje z poprzedniego stanu obiektu i 

model matematyczny analizujący ruch obiektu. Model uwzględnia również wszelką 

 
8 Źródło: https://arxiv.org/abs/2407.07760 



37 

niepewność w ruchu obiektu (szum procesowy i szum pomiarowy). Oryginalnie, filtr 

Kalmana został opracowany dla układów liniowych i znalazł szerokie zastosowania w wielu 

gałęziach techniki. Modyfikacje filtru Kalmana pozwalają na pracę z układami 

niestacjonarnymi (zmienny w czasie model) i nieliniowymi (Rozszerzony Filtr Kalmana - 

użyty przy misji Apollo) 

Zalety: 

• Matematyczny model nie wymagający żadnego szkolenia. 

• Wydajny obliczeniowo. 

Wady: 

• Mniejsze możliwości w porównaniu do nowoczesnych algorytmów wykorzystujących 

uczenie głębokie. 

• Aby działał poprawnie muszą być spełnione pewne założenia, na przykład stałe 

przyspieszenie obiektu (dla wersji liniowej). 

• Algorytm nie sprawdza się dobrze w scenariuszach z losowym ruchem obiektu. 

KCF [58] 

Kernel Correlation Filters to model matematyczny, który wyznacza cechy obiektu i uczy się 

odróżniać je od tła. 

Po wyznaczeniu cech obiektu używa filtrów korelacji, aby skonstruować wielowymiarową 

relację między cechami, a prawdziwym obiektem. Skanując obraz wokół ostatniej znanej 

lokalizacji obiektu wyznacza się obszar o najwyższej korelacji. Przewiduje się, że obszar o 

najwyższej korelacji będzie zawierał obiekt. 

Zalety: 

• Szybkie obliczenia. Ponad 300 FPS. 

• Niskie wymagania pamięciowe. 

• Skuteczny w śledzeniu obiektów o złożonych teksturach, dzięki modelowanie 

nieliniowych zależności w danych. 

• Nie wymaga dużych zbiorów danych do treningu. Wystarczy początkowy model 

obiektu, a algorytm może śledzić obiekt bazując na iteracyjnie aktualizowanym modelu. 

Wady: 

• Tradycyjny KCF napotyka wyzwania w takich warunkach, jak zmienna skala obiektu, 

kształt, złożona deformacja, lub gdy obiekt dotykają granic obrazu. 
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• W złożonych scenach gdzie wiele obiektów ma podobne cechy, może przeskakiwać z 

obiektu na obiekt, a gdy obiekt zniknie z pola widzenia kamery lub zostanie przesłonięty 

przez inny obiekt, śledzenie może zostać przerwane. 

Median Tracker[59] 

Median Tracker bazuje na metodzie Lucasa-Kanade [60] - pola przepływu optycznego, która 

zakłada, że jasność pikseli śledzonego obiektu jest niezmienna w czasie, a sąsiednie piksele 

mają ten sam wektor ruchu, a sam ruch jest mały w kolejnych klatkach. Median Tracker 

śledzi ruch obiektu do przodu i do tyłu w czasie i przewiduje dalszą pozycję obiektu w czasie 

rzeczywistym. 

Zalety: 

• Wystarczająco duża prędkość i dokładność śledzenia, jeśli obiekt nie jest przesłaniany 

przez inne obiekty, a pomiędzy klatkami nie zmienia istotnie swojego położenia.  

• Nie trzeba znać modelu dynamiki poruszającego się obiektu. 

Wady: 

• Duże prawdopodobieństwo utraty obiektu przy dużej prędkości jego ruchu. 

• Po utraceniu obiektu nie można go ponownie odnaleźć 

DeepSORT [61] 

Algorytm Deep Simple Online Realtime Tracking (DeepSORT) pozwala na śledzenie 

równocześnie wielu obiektów i jest rozszerzeniem oryginalnego algorytmu SORT. 

Oryginalny algorytm SORT używa filtrów Kalmana do przewidywania ruchu obiektów i 

węgierskiego algorytmu (inaczej Kuhn Munkres algorytm [62]) do skojarzeń obiektów klatka 

po klatce.  

DeepSORT wykorzystuje dodatkową neuronową sieć splotową (CNN) jako ekstraktor cech. 

Określają one wygląd obiektu i pozwalają algorytmowi odróżniać ruchome obiekty od 

statycznych. Architekturę algorytmu przedstawiono na rysunku poniżej 
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Rysunek 15 Architektura DeepSORT 9 

Zalety: 

• Wydajna implementacja DeepSort zapewnia śledzenie w czasie zbliżonym do 

rzeczywistego. 

• Może obsługiwać dowolną sieć detekcji wybraną przez użytkownika, taką jak YOLO 

lub RCNN. 

• Odporny na okluzje i może rozróżniać różne obiekty w złożonych scenariuszach. 

Wady: 

• Trening sieci detekcji w celu uzyskania wysokiej dokładności wymaga rozległego 

zestawu danych. 

• Duża zależność od jakości detektora. 

• Wysokie wymagania obliczeniowe (głównie zależne od wykorzystanej jako detektor 

sieci neuronowej). 

GOTURN [62] Generic Object Tracking  

Jeden z pierwszych algorytmów śledzenia wykorzystujący głęboką sieć neuronową. Do sieci 

wprowadzane są dwa obrazy: „poprzedni” i „bieżący”. Na „poprzednim” obrazie znana jest 

pozycja obiektu, natomiast na „bieżącym” obrazie pozycja obiektu musi zostać przewidziana. 

W ten sposób oba obrazy są przepuszczane przez splotową sieć neuronową, której wyjściem 

jest zestaw 4 punktów reprezentujących pola ograniczające przewidywaną pozycję obiektu.  

Zalety: 

• Działa z prędkością nawet 100 klatek na sekundę. 

• Stosunkowo dobra odporność na szumy i zakłócenia. 

 
9 Źródło: https://www.researchgate.net/figure/Architecture-of-Deep-SORT-Simple-online-and-real-time-

tracking-with-deep-association_fig2_353256407 Autor: Addie Ira Borja Parico 
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Wady: 

• Dokładność śledzenia obiektów zależy od jakości danych, na których model został 

wytrenowany. Jeśli dane użyte do treningu nie były wystarczająco zróżnicowane, 

algorytm może gubić obiekty o nietypowym zachowaniu. 

• Gubienie obiektów, które były zasłonięte przez dłuższy czas – brak mechanizmu 

odzyskiwania obiektu po zniknięciu. 

• Przeskakuje ze śledzonego obiektu na inny, jeżeli prędkość pierwszego jest zbyt duża. 

ByteTrack [64] 

ByteTrack to algorytm śledzący wiele obiektów, którego skuteczność w dużym stopniu 

zależy od skuteczności detektora obiektów. Bazując na mechanizmie DeepSORT, ByteTrack 

wymaga, aby detektor wygenerował obszary detekcji bez względu na wysokość 

prawdopodobieństwa detekcji obiektu. W przypadku pól detekcji z wysokimi 

prawdopodobieństwami detekcji, ByteTrack wykonuje dopasowywanie cech i 

dopasowywanie IoU10 (Intersection Over Union), podczas, gdy dla obszarów o niskimi 

prawdopodobieństwie tylko dopasowywanie IoU.  

ByteTrack stara się zamodelować sposób, w jaki obiekty poruszają się i oddziałują na siebie 

w dynamicznym środowisku, dzięki czemu dobrze się sprawdza w śledzeniu obiektów w 

gęsto zaludnionych scenach, gdzie powszechne są przesłonięcia i szybkie ruchy, oraz 

utrzymywanie dokładnej identyfikacji nawet wtedy, gdy obiekty tymczasowo przestają być 

widoczne lub zostają zasłonięte. 

Zalety: 

• Możliwość integracji z dowolnymi detektorami, takimi jak YOLO8. 

• Dość dobra wydajność (zależna głównie od detektora) około 30 FPS (YOLO8) na jednej 

karcie graficznej. 

• Śledzenie wielu obiektów, niezależnie od złożoności środowiska. 

Wady: 

• Zależy od jakości detektora. 

• Śledzenie małych obiektów może być problematyczne. 

• Może mieć trudności w utrzymaniu śledzenia w dynamicznych scenach, gdzie obiekty 

szybko zmieniają położenie lub wygląd. 

 
10 Definicja podana w Słowniczek pojęć punkt 4 na stronie 93 
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Badacze do oceny skuteczności proponowanych rozwiązań często wykorzystują standardowe 

zbiory danych takie VOT [55], ALOV [65], OTB [66]. Ciekawych obserwacji dokonali autorzy 

publikacji „The World of Fast Moving Objects” [67]. Zauważyli oni, że najlepsze trakery, nie 

zawsze dobrze sobie radzą dla zbiorów z szybko poruszającymi się obiektami (ang: Fast 

Moving Objects – FMO). Do podobnych wniosków doszli Wei Chen i inni [7]. Wynika to z 

tego, że w powszechnie dostępnych zbiorach danych nagrania zawierające szybko poruszające 

się obiekty są nielicznie reprezentowane.  

W wielu różnych sportach gra się piłką, lotką tylko w badmintonie. Z tego też powodu problem 

detekcji i śledzenia piłki [68, 69] jest częściej eksplorowany przez badaczy niż problem 

śledzenia lotki do badmintona. Czytając publikacje dotyczące problemu śledzenia piłki lub lotki 

można spotkać się z dwoma podejściami badaczy do rozwiązania tego zagadnienia. 

• Z wykorzystaniem sieci neuronowych. 

• Z wyznaczeniem kluczowych cech śledzonego obiektu i klasyfikacją obiektów na 

podstawie tychże cech. 

Jako, że piłka i lotka są obiektami, które uderzone poruszają się po określonej trajektorii to w 

obu podejściach badacze wykorzystują modelowanie ruchu śledzonego obiektu w celu poprawy 

skuteczności śledzenia. Schematycznie przedstawiono te metody na rysunkach [Rysunek 16, 

Rysunek 17]. 

 

Rysunek 16 Schemat działania metod śledzenia piłki/lotki wykorzystujących sieci neuronowe (opracowanie własne) 
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Rysunek 17 Schemat działania metod śledzenia piłki/lotki na podstawie cech śledzonego obiektu (opracowanie własne) 

Przykładowo Xinguo Yu i Hon Wai Leong zaproponowali dla piłki nożnej w [69] dwufazowy 

algorytm, który w pierwszej fazie generuje dla każdej klatki zestaw kandydatów na piłkę (na 

podstawie koloru, kształtu, rozmiaru), a następnie wykorzystuje je do obliczenia zestawu 

trajektorii, które to są wykorzystywane jako dodatkowa informacja dla trakera. Autorzy podają 

dokładność swojego algorytmu na poziomie 81% 

Wiele prac badawczych dotyczy w śledzenia piłki tenisowej [33, 70, 71, 72, 73]. Zarówno piłka 

tenisowa jak i lotka badmintonowa są szybko poruszającymi się obiektami [67], jednakże 

zarówno kształt jak i dynamika poruszającej się lotki znacznie różni się od piłki tenisowej. Z 

tego powodu znajdujące się w literaturze metody detekcji i śledzenia piłki nie mogą zostać 

bezpośrednio zastosowane detekcji i śledzenia lotki. Zauważyli to też inni badacze zajmujący 

się problemem śledzenia lotki badmintonowej [74, 75].  

W publikacji Visual Tracking Method of a Quick and Anomalously Moving Badminton 

Shuttlecock [74] autorzy śledzą lotkę na podstawie zapisu wideo z wielu kamer. Gdy lotka 

porusza się szybko i jest rozmyta (efekt motion blur), autorzy wykorzystują kształt rozmazanej 

lotki w celu jej lokalizacji. Dokładność lokalizacji lotki podana przez autorów wynosi 4cm.  

W celu wyznaczenia pozycji lotki w 3D autorzy innej publikacji „Using FTOC to track 

shuttlecock for the badminton robot” [7] również używają systemu pomiarowego, gdzie wiele 

kamer obserwuje tę samą przestrzeń. Po usunięciu tła, następuje śledzenie lotki po detekcji, do 

której wykorzystywana jest metoda AdaBoost [76], a deskryptorem cech jest Haar-like features. 
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Wydajność zaproponowanej metody wynosi 10.65 FPS (obliczenia wykonywane na karcie 

graficznej NVIDIA M1200). 

W [75] autorzy dla każdej ramki generują zbiór elementów na podstawie ramki różnicowej 

wygenerowanej z trzech kolejnych ramek. Wszystkie wygenerowane elementy są traktowane 

jako kandydaci na lotkę lub kandydaci na zawodnika. Następnie na podstawie oceny rozmiaru 

kandydata następuje przydział do jednej z grup – lotka, zawodnik. Ostateczna decyzja zostaje 

podjęta przy użyciu zestawu filtrów (rozmiar obiektu, kolor, trajektoria, prędkość poruszania 

się). Skuteczność zaproponowanego przez autorów trakera jest na poziomie 84%. Niewątpliwą 

zaletą tej metody jest jej szybkość działania wynosząca 350 ramek na sekundę. Podobne 

podejście, ale wykorzystujące technikę kształtu z sylwetki w celu modelowania w 3D 

zaproponowali Shishido i Hidehiko [74]. 

W 2021 roku Zhiguang Cao wraz z innymi [10] zaproponował dwie nowatorskie sieci o 

nazwach M-YOLOv2 i YOLOBR bazujące na Tiny YOLOv2. Autorzy zmodyfikowali 

architekturę Tiny YOLOv2, oraz funkcję straty, tak aby poprawić czas jaki potrzebuje sieć do 

wykrywania małych obiektów, takich jak lotki, oraz aby zachować więcej informacji 

semantycznych o małych obiektach. Oni podobnie jak Shishido i Hidehiko używają stereowizji 

i dwukamerowego zestawu pomiarowego ZED, a wydajność ich metody wynosi 22FPS 

(NVIDIA M1200). 

Warto zwrócić uwagę, że żadna z zaproponowanych przez innych autorów metod detekcji i 

śledzenia lotki nie ma, ani wystarczającej dokładności, ani wydajności oczekiwanej przez rynek 

(patrz rozdział 1.2). Metody wykorzystujące sieci neuronowe są przede wszystkim zbyt wolne. 

Autorzy przywołanych publikacji podają wydajność od 10 do 22 FPS, co jest niewystarczające 

w celu precyzyjnego określenia lokalizacji szybko poruszającej się lotki. Rejestracja wideo z 

prędkości 20 FPS oznacza, że pomiędzy kolejnymi klatkami mija 50 ms. Biorąc pod uwagę 

uderzenie clear, po którym przy linii końcowej lotka porusza się z prędkością graniczną 6,7m/s 

[19] to i tak między kolejnymi klatkami pokona dystans 33cm. To nastręcza dodatkowe 

problemy – konieczna staje się ekstrapolacja położenia lotki. Proponowane przez badaczy, 

metody klasyczne są natomiast niewystarczająco dokładne – rynek oczekuje dokładności na 

poziomie 13mm, a proponowane metody mają dokładność około 40mm. Skuteczność trakerów 

na poziomie 81-84% też nie jest szczególnie wysoka. 

W porównaniu z większymi lub bardziej jednorodnymi obiektami (np. piłka do siatkówki) 

śledzenie lotki jest zdecydowanie trudniejsze i wymaga istotnych zasobów sprzętowych [77]. 
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Z tego też powodu, autor podjął decyzję o stworzeniu własnego trakera bazującego na metodzie 

usuwania tła. W szczególności, autor świadomie podjął decyzję o rezygnacji z trakera 

wykorzystującego sieci neuronowe – głównie z powodu długiego czasu inferencji. Autor w 

swoim rozwiązaniu, jako jeden z elementów, wykorzystuje filtr Kalmana, ponieważ jest to 

niewymagający treningu model matematyczny, który jest wyjątkowo efektywny obliczeniowo, 

a wymagania, które ma, aby działał poprawnie są spełnione w badanym scenariuszu - lotka przy 

podłożu porusza się ruchem o stałym przyspieszeniu. 

2.2. Wyznaczenie momentu i miejsca odbicia lotki o podłoże 

Rozwiązanie, opisanego wcześniej, problemu detekcji i śledzenia lotki jest jednym z elementów 

pracy badawczej autora koniecznym do precyzyjnego określenia miejsca upadku lotki w 

stosunku do referencyjnych linii kortu. Autor znalazł tylko jedną publikację „Computer vision 

approach to automatic linesman” autorstwa Leong, L.H.; Zulkifley, M.A.; Hussain, A.B. [78], 

która porusza badany przez autora temat - upadku lotki w korcie lub poza nim. W 

przeciwieństwie do autora, wspomnieni badacze nie testowali swojego rozwiązania w realnych 

warunkach – podczas turniejów badmintona. Dodatkowo, ich kamera obserwowała tylko tylną 

linię, a w 61 wybranych do testów sekwencjach wideo nie było zawodników -  była widoczna 

tylko sama lotka. Ograniczyli również rodzaj zarejestrowanych uderzeń do dwóch - smecz i 

drop. Kolejnym uproszczeniem było to, że wybrali tylko takie sekwencje, w których ich 

detektor rozpoznał lotkę na wszystkich klatkach. Detekcję lotki przeprowadzili usuwając tło 

przez generowanie ramek różnicowych. Moment i miejsce odbicia w tej pracy został wybrany 

dla klatki, w której współrzędna y konturu lotki wyznaczonego z ramki różnicowej miała 

największą wartość i autorzy nie skupiali się na precyzyjnej jej segmentacji (w szczególności 

całkowicie pominęli wpływ cienia lotki na ramkę różnicową). W realnych warunkach jest to 

niezwykle istotne, w celu dokładnej lokalizacji miejsca odbicia lotki o podłoże. Ostatecznie 

dokładność zaproponowanego rozwiązania wyniosła 80% i jest istotnie niższa od osiągniętej 

przez autora – 94%. 

Precyzyjna segmentacja jest istotna w celu wyznaczenia możliwie dokładnie miejsce odbicia 

lotki o podłoże. Tradycyjne podejście do problemu segmentacji bazuje na ekstrakcji 

niskopoziomowych cech opisujących właściwości krawędzi, kształtów, rozkład gradientów czy 

kolorów. Metody tradycyjne zazwyczaj mają niskie wymagania obliczeniowe, ale często też 

wymagają dopasowywania parametrów przez użytkownika. Aktualnie badacze skłaniają się ku 

metodom wykorzystującym sieci neuronowe, które ewoluowały w kierunku rozpoznawania 

tego co się dzieje na obrazie. 
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Omówienie metod potencjalnie przydatnych do segmentacji lotki 

Analizując literaturę na temat segmentacji małych obiektów, a w szczególności z 

uwzględnieniem segmentacji piłki/lotki w sporcie, autor nie natrafił na wiele publikacji 

poruszających temat. Większość badaczy zajmujących się analizą zapisów wideo z zawodów 

sportowych, porusza w swoich publikacjach tylko sam problem detekcji, a nie detekcji i 

segmentacji. W tym rozdziale autor dokonuje przeglądu uznanych metod segmentacji 

(wykorzystywanych nie tylko w sporcie), które mogą być potencjalne przydatne do segmentacji 

lotki. 

Na krótkie omówienie zasługuje kilka prac poruszających temat segmentacji lotki lub piłki.  

T. Dierickx w swojej pracy [79] najpierw usuwa tło, a następnie na uprzednio przetworzonym 

obrazie dokonuje segmentacji lotki z wykorzystaniem metody progowania globalnego. 

W swojej pracy [80] D’Orazio i inni przetwarzają wejściowy obraz wyznaczając krawędzie, a 

następnie wyszukują okręgi lub części okręgów w celu segmentacji piłki futbolowej 

wykorzystując metodę bazującą na Circle Hough Transform [81]. 

Metodę wykorzystującą splotową sieć neuronową zaproponowali Zandycke, Gabriel i inni [82], 

w której ich sieć (nazwana Ball R-CNN) została wytrenowana do predykcji mapy cieplnej piłki. 

Na etapie inferencji dodatkowe reguły wybierają spośród kandydatów na piłkę jednego 

najlepszego wykorzystując między innymi informacje o dynamice ruchu piłki. Wyniki 

zaproponowanego modelu porównują z wynikami uzyskanymi za pomocą sieci Mask-RCNN. 

Zaproponowany model działa z prędkością 38.39 FPS (obliczenia na karcie Nvidia GTX 1080 

Ti dla obrazów o rozdzielczości 1024x512px) i jest istotnie szybszy od Mask-RCNN – 4.33 

FPS. 

Poniżej przedstawiono wady i zalety potencjalnie przydatnych do segmentacji lotki ogólnych 

metod segmentacji obiektów. 

Progowanie 

• globalne, 

• lokalne, 

• adaptacyjne, 

• metoda Otsu [79] 
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Metody wykorzystujące progowanie polegają na wybraniu tych pikseli obrazu, których 

charakterystyka (intensywność, kolor) jest w określonym przedziale wartości. 

Zaletą tej metody jest to, iż jest szybka i prosta, wadą jest trudność w optymalnym doborze 

wartości progowych. 

Wyznaczenie krawędzi [84, 85] 

Metoda ta zakłada, że pomiędzy różnymi obiektami następuje gwałtowna zmiana jasności 

pikseli. Po wykryciu krawędzi, obszary otoczone nimi mogą być zidentyfikowane jako obiekty. 

Zalety: 

• Wysoka skuteczność w znajdowaniu konturów i granic obiektów. 

• Dobrze radzi sobie w obrazach o wyraźnych i ostrych granicach. 

Wady: 

• Może generować zbyt wiele krawędzi, komplikując segmentację. 

• Wymaga dodatkowych kroków, aby połączyć krawędzie i utworzyć zamknięte kontury. 

Segmentacja bazująca na regionach [86, 87] 

• rozrost regionów,  

• podział regionów,  

• metoda działów wodnych 

Metody te polegają na dzieleniu obrazu na obszary na podstawie jednorodności pewnych 

właściwości (koloru, tekstury). 

Metoda rozrostu regionów startując z punktów startowych, łączy je w coraz większe obszary 

(dodając piksele) na podstawie spełnienia kryterium jednolitości. Wynik segmentacji często 

zależy od wyboru punktów startowych. 

W metodzie podziału regionów następuje rekurencyjny podział obrazu na coraz to mniejsze 

obszary i poszukiwanie obszarów jednolitych. 

Zalety: 

• Dobrze segmentuje obszary o jednolitych cechach, nawet przy niskim kontraście (o ile 

regiony są jednorodne). 
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Wady: 

• Wrażliwa na wybór punktów startowych i parametrów progów. 

• Może wygenerować zbyt dużą liczbę małych regionów. 

Metoda działów wodnych 

Metoda działów wodnych rozpoczyna tworzenie regionów (rozlewisk) począwszy od lokalnych 

minimów intensywności jasności pikseli, i wyznacza granice w miejscach spotykania się 

rozlewisk lub największych gradientów.  

Zalety: 

• Działa dobrze w przypadku obrazów z wyraźnymi lokalnymi minimami. 

• Skuteczna w segmentacji elementów o wyraźnych granicach. 

Wady: 

• Częstym problemem algorytmu jest nadmierna segmentacja (oversegmentation) z 

powodu dużej liczby minimów lokalnych. 

• W celu poprawy rezultatów często wymaga dodatkowego przetwarzania, np. 

zastosowania markerów 

Metody grafowe [88, 89] 

Metody grafowe stosują algorytmy z teorii grafów do celów segmentacji. 

Najpopularniejszy jest algorytm Graph-cut [90], który traktuje każdy piksel obrazu jako węzeł 

grafu. Wprowadza węzły oznaczające obszary tła i źródła i łączy każdy piksel z węzłami 

obszarów krawędziami, których waga oznacza prawdopodobieństwo przynależności do tła lub 

źródła. Następnie wyszukuje rozcięcia (cuts) rozdzielające obiekty tła i źródła, którego miarą 

jest zbiór krawędzi, a wśród tych przecięć wyszukuje minimalne (takie którego rozmiar waga 

lub energia jest najmniejsza) 

Zalety: 

• Pozwala na uzyskanie precyzyjnych rezultatów. 

• Skuteczna dla obrazów o wyraźnej różnicy pomiędzy tłem i źródłem. 



48 

Wady: 

• Spora złożoność obliczeniowa, szczególnie dla dużych obrazów. 

• Aby uzyskać zadowalające rezultaty należy prawidłowo dobrać różne parametry 

algorytmu (zależne od przetwarzanego obrazu). 

Active Contour Models (ACMs) Atywne kontury - Snake 

Aktywny kontur - to model pewnej deformowalnej krzywej, która wykorzystywana jest do 

obrysu kształtów. Wymaga zainicjowania konturu niedaleko obiektu, który później zostaje 

przesuwany w stronę obiektu. Jest metoda zaproponowana w 1988r przez Kass’a [91], która 

dopasowuje krzywą do granic obiektu minimalizując pewną funkcję energii. Od tamtej pory 

wielokrotnie udoskonalana, a ostatnie prace połączyły ACM z sieciami głębokimi [92]. 

Zalety: 

• Dobrze radzi sobie z dokładnym dopasowaniem kształtu obiektu, nawet w przypadku 

złożonych konturów. 

• Model aktywnego konturu może dynamicznie dostosowywać swój kształt do złożonych 

obiektów, nawet jeśli ich granice są nieciągłe lub zakryte. 

• Może radzić sobie z obiektami o słabo widocznych granicach. 

• Oprócz krawędzi, model może być rozszerzony o inne cechy obrazu, takie jak 

intensywność, kolor czy tekstura. 

Wady: 

• Wynik segmentacji może być wrażliwy na początkowe ustawienie krzywej. Zła 

inicjalizacja może prowadzić do niepoprawnej segmentacji. 

• ACM minimalizuje pewną funkcję energii, co może prowadzić do utknięcia w lokalnym 

minimum i braku poprawnego dopasowania do obiektu, zwłaszcza w przypadku 

szumów czy niewyraźnych granic. 

• Model preferuje segmentowanie obiektów o stosunkowo gładkich konturach. 

Segmentacja obiektów o ostrych kątach lub nieregularnych krawędziach może być 

mniej skuteczna. 
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• Obliczenia związane z minimalizacją energii i deformacją krzywej mogą być kosztowne 

obliczeniowo, co sprawia, że metoda może być wolna, zwłaszcza w przypadku dużych 

obrazów. 

• Krawędzie obiektów mogą być zakłócone przez szum w obrazie, co utrudnia precyzyjne 

dopasowanie konturu. Może być wymagane dodatkowe przetwarzanie obrazu w celu 

usunięcia szumu. 

Metody wykorzystujące sieci neuronowe  

Mask R-CNN [93] 

Mask Region-based convolutional neural network rozszerza architekturę sieci faster R-CNN 

poprzez dodanie kolejnej gałęzi, która przewiduje maski segmentacji we wskazanych regionach 

zainteresowań. 

W pierwszym etapie następuje ekstrakcja cech z obrazu za pomocą bazowej sieci splotowej 

(CNN). Te cechy są używane do dalszego przewidywania regionów, detekcji obiektów i 

segmentacji. 

Drugim etapem jest propozycja regionów (Region Poposal Network - RPN), w których 

prawdopodobnie znajdują się obiekty.  

W ostatnim etapie następuje predykcja klas obiektów i wybór regionu o najwyższej wartości 

IoU oraz wygenerowanie dokładnej maski segmentacyjnej. 

Zalety: 

• Potrafi rozróżniać i segmentować poszczególne obiekty (instancje) tej samej klasy (np. 

kilka balonów na jednym obrazie). Każdy obiekt ma własną maskę segmentacyjną. 

• Wysoka precyzja w wyznaczaniu granic obiektów.  

• Elastyczna i modularna architektura. Można łatwo modyfikować poszczególne 

komponenty np. zmienić sieć bazową, w zależności od potrzeb i zasobów sprzętowych. 

• Detekcja i segmentacja w jednym modelu. 

• Skalowalność do obrazów o różnych rozdzielczościach. 

Wady: 

• Wymaga dużych zasobów GPU i pamięci, co może ograniczać jego zastosowanie do 

urządzeń o wystarczających parametrach sprzętowych. 
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• Działa wolniej w porównaniu do prostszych modeli detekcji, zwłaszcza przy obrazach 

o dużej rozdzielczości lub zawierających wiele obiektów. 

• Wymaga dużych, dobrych jakościowo zestawów danych do treningu. 

• Problemy z małymi obiektami. Dla małych obiektów dostępne są ograniczone 

informacje o cechach, ponieważ są one generowane z wykorzystaniem mniejszej liczby 

pikseli. Utrudnia to modelowi zidentyfikowanie precyzyjnych granic małych obiektów. 

Dodatkowo RPN może mieć trudności z wygenerowaniem odpowiednich regionów 

zainteresowania, które precyzyjnie otaczają niewielkie obiekty. 

• Brak segmentacji semantycznej, gdzie każdemu pikselowi na obrazie przypisywana jest 

etykieta klasy - segmentuje obiekty na poziomie instancji. 

SAM [94] 

Segment Anything Model to model, który pozwala na segmentację dowolnego obiektu (tzw. 

zero-shot segmentation) w przeciwieństwie do innych modeli (np. Mask R-CNN, które to 

potrafią znajdować tylko te klasy obiektów, dla których zostały wytrenowane). W celu 

segmentacji konieczne jest wskazanie obszaru, w którym znajduje się segmentowany obiekt, 

lub kilku punktów leżących w obrębie obiektu (monit użytkownika). Model wykorzystuje 

architekturę kodera-dekodera, gdzie bazujący na wizualnym transformerze (Vision 

Transformer [57]), główny koder (image encoder): 

- dzieli obraz wejściowy na małe fragmenty (patches), które są przetwarzane 

równocześnie, 

- transformer przetwarza te małe fragmenty, ucząc się wzorców i relacji między różnymi 

częściami obrazu, 

- jako wynik zwraca zwartą reprezentację obrazu (image embedding), która zawiera 

istotne cechy obrazu.  

Drugim koderem jest koder monitów, który przyjmuje monity użytkownika jako dane 

wejściowe i przekształca je na ujednoliconą reprezentację wektorową, którą model potrafi 

interpretować. 

Dekoder maski natomiast przekształca te wskazówki w dokładne maski segmentacyjne. 

Schemat działania przedstawiono na [Rysunek 18] 
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Rysunek 18 Architektura Segment Anything Model11 

Zalety: 

• Wysoka precyzja i elastyczność. 

• Skuteczność w segmentacji różnorodnych obrazów. 

• Interaktywność – dekoder szybko reaguje na wskazówki użytkownika. 

Wady: 

• Wymaga dużych zbiorów danych do treningu. 

• Wymaga wskazówek użytkownika. 

• Może mieć problemy z segmentacją dla obrazów, gdzie granice pomiędzy obiektami są 

niejednoznaczne lub rozmazane, lub gdy obiekt jest częścią większej struktury. 

• Może wystąpić problem nadmiernej segmentacji (oversegmentation) lub 

niewystarczającej segmentacji (undersegmentation). 

 
11 Źródło https://ai.meta.com/research/publications/segment-anything/ 
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• Może mieć problemy z segmentacją obiektów (szczególnie o nietypowych kształtach), 

które nie pojawiły się w zbiorze treningowym. 

• Znaczne zapotrzebowanie na zasoby obliczeniowe (GPU). 

2.3. Wiodące komercyjne rozwiązania wspomagające decyzje sędziowskie w 

sporcie 

Na rynku istnieją firmy, które oferują gotowe rozwiązania z wizji komputerowej dla sportu, 

jednakże są one bardzo drogie, także ze względu na monopolizację rynku. Najbardziej znanymi 

na rynku firmami oferującymi komercyjne rozwiązania do detekcji i śledzenia obiektów w 

sporcie są: Hawk Eye Innovations (Sony) [17], Stats Perform [95], TRACAB [96]. Niestety 

żadna z tych firm nie przedstawia szczegółów swoich badań, w związku z czym nie można tych 

badań, ani powtórzyć, ani potwierdzić wyników, którymi chwalą się wspomniane firmy. Z 

biznesowego punktu widzenia jest to zrozumiałe, z naukowego kłopotliwe. Światowy lider - 

firma Hawk Eye Innovations wskazuje średni błąd dokładności lokalizacji miejsca odbicia piłki 

tenisowej na poziomie 3.6 mm [97] nie podając jednakże żadnych szczegółów w jaki sposób 

dokonano tych szacunków. 

Z informacji udostępnianych przez wspomniane firmy można uzyskać tylko bardzo ogólną 

wiedzę co do użytych technologii. Dla przykładu rozwiązanie firmy TRACAB, które jest 

głównie używane w piłce nożnej do śledzenia zawodników, wykorzystuje algorytmy uczenia 

maszynowego i konwolucyjne sieci neuronowe [98]. Warto tutaj nadmienić, że wizyjne metody 

śledzenia obiektów są narażone na błędy spowodowane okluzjami. Dlatego też często 

wymagana jest korekcja tych błędów przez ludzkiego operatora [99]. 

Ciągle jeszcze oferowane rozwiązanie nie są w 100% skuteczne. Podczas turnieju tenisowego 

na kortach Wimbledonu w 2022r. podczas ćwierćfinałowego meczu zawodnicy Joe Salisbury i 

Rajeev Ram odmówili dalszej gry po kontrowersyjnej decyzji systemu Hawk Eye [100]. Po 

błędnej decyzji (doskonale widocznej na filmie [101]) podczas badmintonowego turnieju 

DAIHATSU Indonesia Masters 2021 światowa organizacja badmintona i firma Hawk Eye 

wydali oświadczenie, w którym przepraszają za ten błąd [102]. Z inny przykładem błędnej 

decyzji systemu Hawk-Eye w rugby można zapoznać się oglądając [103]. Pomimo 

wspomnianych błędnych decyzji, systemy komputerowe w ogólności są bardziej dokładne niż 

ludzie [104]. Dlatego też od 2001 roku aplikacje wizji komputerowej są używane w wielu 

dyscyplinach sportowych [8, 9], a w badmintonie system Hawk Eye pojawił się w 2014r.  
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3. Charakterystyka zasadniczego osiągnięcia i opis opracowanej 

metody 

3.1. Gromadzenie danych do eksperymentów 

Istotną wartością pracy badawczej autora jest to, że oprócz danych zarejestrowanych podczas 

eksperymentów w klubie Kahuna w Warszawie, dane był też zabierane podczas realnych 

zawodów - w różnych obiektach sportowych posiadających też różne oświetlenie. Były to 

między innymi hale w Katowicach (Mistrzostwa świata seniorów), Wesołej (mistrzostwa 

juniorów Mazowsza), Głubczycach (mistrzostwa Polski U17), Częstochowie (Yonex Polish 

Open), Warszawie (mistrzostwa seniorów Mazowsza). Co więcej, zostały zarejestrowane tylko 

te sytuacje, gdy zawodnik nie zgadzał się z decyzją sędziego liniowego. Zebrane materiały 

wideo zostały wykorzystane od opracowania i testów algorytmów. Finalna ocena skuteczności 

opracowanego systemu odbyła się zgodnie z poniższą procedurą. 

• Zdecydowano, że dane do oceny skuteczności algorytmów (zbiór testowy) 

zostaną zarejestrowane w hali, w której nigdy wcześniej nie dokonywano 

pomiarów. Dane zostały zebrane podczas największego turnieju badmintonowego 

jaki odbył się w Polsce - mistrzostw świata seniorów Katowice 2019 oraz 

mistrzostw Polski U17 w Głubczycach. 

• Podczas turniejów zbierano dane w następujący sposób:  

o Za każdym razem, gdy zawodnik nie zgodził się z decyzją sędziego 

podnosił rękę, prosząc o wideo weryfikację. Po tym sygnale operator 

systemu uruchamiał procedurę zapisu ostatnich 24 sekund danych z 

kamery, w polu widzenia której była lotka. 

• Zapisane pliki zostały wczytane na wejściu do stworzonego na potrzeby projektu 

oprogramowania do anotacji danych. 

• Ponieważ w zapisanym klipie przez większość czasu nic się nie dzieje – są 

widoczne linie kortu, osoba anotująca dane z 24 sekundowego klipu starała się 

wybierać te fragmenty, na których widać było poruszające się obiekty 

(zawodników, lotkę, publiczność itp.) oraz moment odbicia lotki o podłoże. Nie 

oznacza to, że wśród danych do testów nie ma takich obrazów, na których widać 

tylko linie kortu i nic więcej. Jednakże jest ich zdecydowanie mniej, niż gdyby 

zachowano do anotacji całe 24 sekundowe sekwencje. Dla każdej ramki w 
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wybranych sekwencjach oznaczono pozycję lotki oraz moment odbicia korka 

lotki o podłoże. Dla ramki, w której nastąpiło odbicie o ziemie operator zaznaczał 

obszar, w którym lotka dotykała podłoża i decydował czy lotka jest w polu gry, 

czy poza nim. Drugi operator dokonywał weryfikacji anotacji i korygował błędy. 

Ostateczna weryfikacja czy lotka upadła w polu gry, czy poza nim była dokonana 

przez licencjonowanego sędziego badmintona panią Joannę Mądry12  

Tak utworzono zbiór danych liczący 13442 obrazy. Na 1793 obrazach operator 

zaznaczył pozycję lotki (ground truth), na 11649 ramkach nie było lotki. 

• Zbiór danych został podzielony na zbiór treningowy, walidacyjny oraz testowy. 

Zbiór testowy zawierał nagrania z Katowic i Głubczyc i został wykorzystany do 

ostatecznej weryfikacji całości rozwiązania. Dane z pozostałych hal zostały 

podzielone na zbiór treningowy i walidacyjny. 75% sekwencji przydzielono 

losowo do zbioru treningowego a 25% do zbioru walidacyjnego. 

• Zebrane dane zostały wykorzystane do opracowania odpowiednich modeli i 

algorytmów oraz do oceny ich skuteczności. Zostały wyznaczone odpowiednie 

miary, a te modele, które były najlepsze zostały ostatecznie wybrane.  

3.2. Ogólny opis zaproponowanej metody 

Jak już wspomniano na początku, ze względu na wymagania implementacyjne (ograniczone 

gabaryty, mobilność, łatwość instalacji i re-konfiguracji, koszt etc.) autor poświęcił dużą uwagę 

na stworzeniu takich rozwiązań algorytmicznych, które nie będą wymagały dużej mocy 

obliczeniowej i nie będą miały wysokich wymagań pamięciowych, równocześnie zapewniając 

dostarczenie wyników w czasie rzeczywistym. Z tego powodu też w pierwszej kolejności autor 

tworzył modele o ograniczonej złożoności, które następnie były udoskonalane, w celu 

zapewnienia wystarczająco wysokiej skuteczności rozpoznania miejsca upadku lotki. Autor 

wykorzystując realia gry w badmintona i wiedzę domenową wspartą własnym 

doświadczeniem, zdobytym przez kilkanaście lat grania w turniejach badmintona, rozszerzył 

znane z literatury koncepcje o własne rozwiązania ekstrakcji i selekcji kluczowych cech, 

wyznaczanych na podstawie zarejestrowanych sekwencji wideo zawierających lecącą lotkę i 

moment jej upadku na kort. Opracowane rozwiązania pozwoliły efektywnie rozwiązać 

przedstawione problemy badawcze.  

 
12 Nr licencji 383 https://pzbad.pl/wp-content/uploads/2024/07/sedziowie_z_kwalifikacjami_01072024.pdf 
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Podstawowym problemem jest ustalenie położenia upadającej lotki względem linii kortu na 

podstawie jednej kluczowej ramki (najbliższej momentowi upadku), którą udało się 

zarejestrować z zadaną rozdzielczością czasową (kompromis względem ograniczeń 

sprzętowych i czasowych oraz uwarunkowań zewnętrznych - głównie oświetleniowych, 

panujących w hali sportowej). 

Aby rozwiązać podstawowy problem badawczy należy też rozwiązać też szereg innych 

problemów o które wymieniono w rozdziale 1. Poniżej, w sposób ogólny, przedstawiono 

metodę rozwiązania trzech kluczowych problemów badanych przez autora, które zostały 

szczegółowo opisane w dalszej części rozprawy. 

Detekcja i śledzenie lotki 

Aktualnie większość badaczy problem detekcji obiektów na obrazie rozwiązuje z użyciem 

złożonych modeli sieci neuronowych. Autor również korzysta z sieci neuronowej (YOLOv3), 

ale tylko wtedy gdy podstawowy moduł śledzący zgubił lotkę. To wyjątkowe, hybrydowe 

podejście pozwala na działanie opracowanego rozwiązania w czasie rzeczywistym. 

W podstawowym module śledzącym, do detekcji poruszającej się lotki (taka nas tylko 

interesuje), autor wykorzystał odpowiednio przetworzone dane ze strumienia wideo, tworząc 

ramki różnicowe oraz akumulacyjne ramki różnicowe. Dzięki odpowiedniemu doborowi 

parametrów (kamery jak i parametrów modułu tworzącego akumulacyjne ramki różnicowe) 

poruszająca się lotka na akumulacyjnej ramce różnicowej ma kształt podobny do kredki 

[Rysunek 19]. Ten charakterystyczny kształt jest znajdowany i śledzony w każdej klatce 

strumienia wideo. Warto zauważyć, że kształt jaki ma lotka na akumulacyjnej ramce różnicowej 

wyznacza równocześnie kierunek, w którym się porusza. W opracowanej metodzie detekcji i 

śledzenia lotki, ze względu na możliwe okluzje, autor wykorzystuje też szaroodcieniowe obrazy 

zarejestrowane przez kamerę, które są wejściem do sieci neuronowej. Schemat algorytmu został 

szczegółowo opisany w dalszej części rozprawy. 
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Rysunek 19 Akumulacyjna ramka różnicowa, na której lotka ma charakterystyczny kształt 

Wyznaczenie kluczowej ramki, w której nastąpiło odbicie o podłoże 

W związku z tym zastosowanym układem kamer [Rysunek 3] nie jest możliwe wyznaczenie 

pozycji lotki w przestrzeni trójwymiarowej. W układzie kamer nad kortem, gdy mamy 

trajektorię lotki w 3D można wyznaczyć moment odbicia analizując zmienność trajektorii lotki. 

W przypadku, gdy mamy tylko dane w 2D wyznaczenie momentu odbicia na podstawie 

zmienności trajektorii jest trudniejsze - szczególnie, gdy lotka leci płasko w stronę kamery, a 

po odbiciu prawie nie zmienia swojej trajektorii w stosunku do kamery. Takie sytuacje zdarzają 

się najczęściej po uderzeniu smash, które zawodnicy głównie kierują w kierunku linii bocznej. 

Gdy lotka upada w okolicy linii końcowej (dzieje się tak po uderzeniu clear), to można 

wyznaczyć moment odbicia na podstawie śledzenia zmienności trajektorii. Jednakże ze 

statystyk zebranych przez autora [Tabela 21, strona 116] wynika, że gdy lotka upada w okolicy 

linii końcowej, zawodnicy proszą o weryfikację z systemu challenge tylko w 1/3 przypadków, 

więc metoda analizy zmienności trajektorii nie zawsze będzie skuteczna. Biorąc pod uwagę 

poczynione obserwacje, autor opracował metodę, która w celu wyznaczenia kluczowej ramki, 

w której nastąpiło odbicie o podłoże, analizuje również inne dane. 

Na rysunku [Rysunek 20] przedstawiono przykładowe zachowanie lotki upadającej na linie 

końcową po uderzeniu clear, a na rysunku [Rysunek 21] na linie boczną po uderzeniu smash. 

Żółtym kolorem zaznaczono trajektorię lotki wygenerowaną przez traker, a żółta kropka 

oznacza pozycję korka zwróconą przez traker. 



57 

 

Rysunek 20 Kolejne klatki z lotką odbijająca się od podłoża w okolicy linii końcowej po uderzeniu clear 

 

Rysunek 21 Lotka odbijająca się od podłoża w okolicy linii bocznej po uderzeniu smash 

U podstaw algorytmu wyznaczającego kluczową ramkę jest fakt, że w momencie odbicia lotka 

istotnie zmniejsza swoją prędkość (korek przestaje się poruszać). Autor wyznacza szereg cech 

uzyskanych na etapie przetwarzania danych, które następnie są wejściem do modelu uczenia 

maszynowego. Wytrenowany model odpowiada na pytanie czy w danej ramce było odbicie o 

podłoże czy też nie.  

Powstaje pytanie czy kamera zawsze zarejestruje moment odbicia o podłoże, czy też chwilę 

przed lub po. Aby odpowiedzieć na to pytanie, trzeba wiedzieć jaka jest przerwa czasowa 

pomiędzy rejestracją kolejnych klatek przez kamerę. Ta przerwa czasowa zależy od modelu 

kamery i ustawień jej parametrów. Do rejestracji wideo użyto kamer Basler ace UacA800-

200gm [105] działających w trybie free run [106] (z maksymalną możliwą szybkością). Dla 

tego trybu sposób akwizycji danych przez kamerę przedstawiono na rysunku [Rysunek 22]. 
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Rysunek 22 Sposób w jaki kamera naświetla sensor i odczytuje z niego dane dla kolejnych ramek13 

Przerwa czasowa pomiędzy naświetlaniem sensora kolejnych klatek jest sumą czasu 

potrzebnego na odczyt danych z sensora kamery (Readout) i opóźnieniem rozpoczęcia 

ekspozycji [107]. Użyte przez autora kamery pozwalają na rozpoczęcie naświetlanie nowej 

ramki, w czasie gdy dane z sensora kamery dla poprzedniej ramki są jeszcze odczytywane. Dla 

tej konkretnej kamery są to (podane przez producenta) wartości: Sensor Readout Time –10 µs 

oraz Exposure Start Delay - 3µs. Czyli maksymalna przerwa pomiędzy naświetlaniem 

kolejnych ramek może wynieść 13 mikrosekund. Jak już wspomniano wcześniej, mimo że lotka 

może mieć prędkość początkową powyżej 400 km/h, to ze względu na swój kształt, po 

uderzeniu gwałtownie zmniejsza swoją prędkość. Nie zarejestrowano przy podłożu prędkości 

wyższych niż 9.72 m/s. Oznacza to, że w czasie 13 mikrosekund lotka może pokonać dystans 

0,126 mm. Jest to maksymalny błąd wynikający z tego, że na kluczowej ramce możemy nie 

mieć dokładnego momentu odbicia. Ta wartość jest tak niska, że z punktu widzenia badanego 

problemu pomijalna i autor przyjął, iż zawsze w strumieniu wideo jest ramka z 

zarejestrowanym momentem odbicia lotki o podłoże, a nie chwilę przed lub po. 

Wyznaczenie miejsca odbicia lotki o podłoże 

W celu wyznaczenia miejsca odbicia lotki o podłoże konieczna jest jej precyzyjna segmentacja 

na kluczowej ramce (tej która została wybrana jako ta, w której było odbicie o podłoże). 

Układ nakładających się na siebie piór lotki powoduje, że lotka oprócz tego, iż porusza się 

ruchem postępowym, to jeszcze wiruje, w związku z czym nawet w momencie odbicia się lotki 

 
13 Źródło: https://docs.baslerweb.com/overlapping-image-acquisition#non-overlapping-image-acquisition 
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o podłoże pióra lotki są mocno rozmyte [Rysunek 23]. To rozmycie lotki powoduje, że 

krawędzie lotki nie odcinają się ostro od tła, co jest szczególnie problematyczne, gdy w tle 

białej lotki znajduje się biała linia. Co gorsze, najczęściej zawodnik prosi o weryfikację decyzji 

sędziego, właśnie wtedy, gdy lotka w momencie odbicia znajduje się w pobliżu linii. Z tego 

powodu znane metody segmentacji, których większość bazuje na gradientach, kiepsko radzą 

sobie z precyzyjną segmentacją lotki. Autor pragnie zauważyć, że w celu określenia miejsca 

odbicia lotki o podłoże w stosunku do referencyjnych linii kortu, kluczowa jest segmentacja 

korka lotki (ze względu na swój kształt, lotka zawsze odbija się o podłoże korkiem). Aby 

wyznaczyć na obrazie korek lotki, autor opracował nowatorską metodę polegającą na 

obliczeniu okręgu wyznaczającego korek lotki na podstawie wyznaczonych uprzednio cech. W 

szczególności autor nie szuka na obrazie konturu lotki, tylko szuka ciemnego paska, który 

oddziela korek lotki od piór. Ciemny pasek zawsze okala korek i mocno odcina się od białego 

korka i piór – co ułatwia jego segmentację [Rysunek 20, Rysunek 21, Rysunek 23]. Ponieważ 

wszystkie lotki muszą spełniać normy dotyczące rozmiaru, to po wyznaczeniu tego paska 

możliwe jest, dokonując obliczeń matematycznych, wyznaczenie okręgu odpowiadającego 

korkowi lotki. Samo wyznaczenie ciemnego paska, a precyzyjniej jednego charakterystycznego 

punktu znajdującego się na prostej przechodzącej przez środek lotki, to zadanie wytrenowanego 

modelu uczenia maszynowego szczegółowo opisanego w dalszej części. 

 

Rysunek 23 Lotka odbijająca się po podłoże. Widoczne rozmycie piór oraz czarny pasek oddzielający korek od piór. 

 

3.3. Szczegółowy opis algorytmów, eksperymenty i wyniki badań 

eksperymentalnych 

Detekcja i śledzenie lotki 

Aby móc śledzić dowolny obiekt, najpierw należy go znaleźć na obrazie. Do znalezienia 

konkretnego obiektu można zastosować wiele metod, od najprostszych, takich detekcja na 

podstawie cech obiektu takich jak kolor i kształt, po metody wykorzystujące sieci neuronowe. 
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W rozdziale 2 przedstawiono wybrane metody śledzenia obiektów, które z są stosowane przy 

detekcji różnorodnych obiektów. Stosowanie ogólnego, uniwersalnego podejścia do 

wykrywania lotki jest problematyczne z kilku powodów. 

1. W zależności od kąta pod jakim kamera obserwuje lotkę, kształt lotki do 

badmintona może być postrzegany na obrazie jako koło lub trójkąt [Rysunek 13], 

dlatego odnalezienie jej na obrazie jest trudniejsze niż znalezienie piłki, która jest 

zawsze widziana jako kształt kolisty. 

2. W przypadku ustawienia kamer przy liniach kortu, rozmiar lotki może znacząco 

zmienić się w miarę zbliżania się do kamery. Lotka może być zaobserwowana w 

odległości od 1,5m do 8,2m. Daje to przeszło pięciokrotną różnicę w wielkości 

lotki. 

3. Prędkości z jakimi może poruszać się lotka mają dużą rozpiętość. W momencie 

odbicia lotki przez zawodnika może to być nawet powyżej 400 km/h (uderzenie 

smecz) ale już w momencie odbicia o ziemię może to być prędkość terminalna – 

6.7 m/s [108]. Dodatkowo, prędkość lotki zaraz po uderzeniu jej przez zawodnika 

gwałtownie się zmniejsza. Lotka, w przeciwieństwie do piłki tenisowej, nie odbija 

się tak sprężyście od podłoża. W związku z czym po odbiciu porusza się dużo 

wolniej niż przed odbiciem. 

4. Biały kolor lotki może być bardzo podobny do sceny (skarpetki zawodnika, białe 

linie kortu, litery na tablicach ogłoszeniowych). 

5. Lotka często porusza się w złożonych sytuacjach: poruszający się gracze, szybko 

poruszające się rakiety zawodników i zmieniające się tło. 

6. Ze względu na stożkowy kształt i środek ciężkości umieszczony w okolicy korka 

(a nie w środku lotki), trudno jest przewidzieć trajektorię lotu zgodnie z prawami 

fizyki opisanymi prostymi wzorami, zwłaszcza po uderzeniu, lub odbiciu o 

podłoże, gdy lotka obraca się i ma niestabilną trajektorię [109]. 

Dzięki ustawieniu kamer blisko kortu [Rysunek 3], zawęża się pole widzenia każdej z kamer 

do najważniejszego z punktu widzenia badanego problem obszaru, czyli okolic linii pola gry. 

W ten sposób też ogranicza się widoczność innych poruszających się obiektów (np. graczy) - 

lotka jest często jedynym poruszającym się obiektem. 

Upraszcza to również problem niestabilnej trajektorii w momencie odbicia lotki przez 

zawodnika. Trajektoria lotki się stabilizuje dopiero po pewnym czasie od odbicia, a przy ziemi 

jest już stabilna i łatwa do wyznaczenia na podstawie kilku kolejnych ramek. Ponadto prędkość 
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lotki na ostatnim metrze przed uderzeniem o podłoże jest prawie stała. Trajektoria lotki jest 

wyznaczana na podstawie kolejnych pozycji korka, wyznaczonego z akumulowanych ramek 

różnicowych. Jest ona dopasowywana do linii prostej -  [Rysunek 24]. 

Kolejną zaletą ustawienia kamery w pobliżu kortu jest to, że rozmiar lotki w pikselach jest 

większy, niż w przypadku, gdy kamera obejmuje swoim polem widzenia cały kort i jest 

umieszczona w dużej odległości od pola gry. Ustawienie kamery w niewielkiej odległości od 

kortu pozwala na osiągnięcie większej dokładności lokalizacji miejsca upadku lotki. 

 

Rysunek 24 Trajektoria lotki przy linii oraz przewidywana pozycja lotki wyznaczona za pomocą filtru Kalmana (kolor 

zielony), Prawdziwa pozycja loki w kolejnych ramkach wyznaczona przez operatora (kolor żółty) 

 

Opis metody zastosowanej do detekcji lotki 

Kolejne kroki jakie wykonywane są przez algorytm detekcji lotki w celu znalezienia lotki w 

strumieniu wideo są następujące: 

1. wygenerowanie ramki różnicowej z dwóch kolejnych ramek, 

2. usunięcie dużych obiektów z ramki różnicowej, 
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3. wygenerowanie akumulacyjnej ramki z 7 kolejnych ramek różnicowych z pkt 2, 

4. wygenerowanie zestawu kandydatów na lotkę z akumulacyjnej ramki różnicowej z 

pkt 3, 

5. zastosowanie zestawu filtrów odrzucających ze zbioru kandydatów tych, którzy nie 

pasują do modelu lotki, 

6. wyznaczenie trajektorii dla każdego z kandydatów na lotkę pozostałych w zbiorze 

kandydatów, 

7. usunięcie ze zbioru tych kandydatów, dla których trajektoria nie pasuje do modelu 

trajektorii poruszającej się przy linii lotki. 

Powyższe kroki algorytmu są opisane bardziej szczegółowo w dalszej części rozprawy. 

Lotka jest szybko poruszającym się obiektem na zwykle nieruchomym tle. Dlatego też 

zastosowanie metody polegającej na generacji obrazów różnicowych z kolejnych klatek, 

pozwala na szybkie odróżnienie poruszających się obiektów od statycznego tła. 

Z drugiej strony, gdy lotka uderza w podłoże to może na chwilę przestać się poruszać i 

„zniknąć” z obrazu różnicowego. Dlatego w przedstawionym rozwiązaniu oprócz ramki 

różnicowej z dwóch kolejnych zaproponowana metoda generuje akumulacyjną ramkę 

różnicową z 7 kolejnych obrazów różnicowych. Dzięki temu nie zgubimy lotki w momencie 

uderzenia o ziemię. Dla zadanej prędkości rejestracji wideo (150-200FPS) eksperymentowano 

z różną liczbą ramek, z której generowana jest akumulacyjna ramka różnicowa i dla wartości 7 

osiągnięto najlepsze wyniki. Zbyt mała liczba ramek różnicowych do akumulacji powoduje, że 

trudno odróżnić lotkę od innych poruszających się obiektów. Zbyt duża, natomiast powoduje, 

że w momencie, gdy lotka porusza się w pobliżu innego poruszającego się obiektu (np. 

zawodnika), to te dwa obiekty mogą się połączyć i lotka przestanie mieć charakterystyczny 

kształt i nie zostanie znaleziona. Przykład takiej sytuacji znajduje się na rysunku [Rysunek 25] 
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Rysunek 25 Lotka, która poruszała się na tle przesuwającego się zawodnika. Z lewej - oryginalny obraz zarejestrowany przez 

kamerę, środkowy - akumulacyjna ramka różnicowa, prawy - ramka różnicowa. 

To nowatorskie podejście wykorzystuje, zazwyczaj niepożądany, efekt rozmycia 

znajdowanego  obiektu. Parametry progowania podczas tworzenia ramki różnicowej zostały 

tak dobrane, aby po utworzeniu ramek różnicowych ich połączenie w ramkę akumulacyjną 

utworzyło dla lotki obiekt o kształcie zbliżonym do kredki [Rysunek 19, Rysunek 25 

(środkowy), Rysunek 26, Rysunek 29a]. 

W zaproponowanej metodzie intensywność pikseli w ramce akumulacyjnej odpowiada 

kolejności  obrazów użytych do jej wygenerowania. Piksele z późniejszych obrazów 

różnicowych uzyskują niższe wartości niż piksele z wcześniejszych obrazów (od jasnego do 

ciemnego odcienia szarości). W ten sposób uzyskuje się dodatkową informację o kierunku 

ruchu obiektu. Na takim obrazie znajdowani są kandydaci na lotkę. Każdy wydzielony obszar 

(blob) trafia do zbioru kandydatów i dla każdego kandydata obliczany jest zestaw cech. Cechy 

są obliczane dla każdego bloba wyznaczonego na akumulacyjnej ramce różnicowej. Lista 

wyznaczonych cech jest przedstawiona w tabeli [Tabela 3]. Na podstawie tych cech i 

zdefiniowanych uprzednio filtrów ze zbioru odrzucani są ci kandydaci, którzy nie pasują do 

modelu poruszającej się lotki. Jeśli w zbiorze pozostanie więcej niż jeden kandydat, to dla 

każdego kandydata z obrazu zarejestrowanego przez kamerę wycinamy część obrazka o 

rozmiarze 104x104 px, którego środek jest wyznaczony przez położenie kandydata i 

przekazujemy go do sieci neuronowej wytrenowanej do rozpoznawania lotki do badmintona. 

Kandydat, dla którego prawdopodobieństwa bycia lotką jest najwyższe pozostaje w zbiorze. 

Jeśli po zastosowaniu filtrów w zbiorze kandydatów nie pozostanie żaden kandydat, a w 

poprzedniej chwili czasowej (t-1) algorytm znalazł lotkę, to z wykorzystaniem filtru Kalmana 

przewidywana jest, w chwili t, pozycja lotki: punkt - P(x,y), a wycinek obrazu o środku w P 

przekazywany jest do sieci neuronowej. Jeśli w przekazanym wycinku obrazu sieć znalazła 

lotkę, to pozycja P(x,y) jest zapamiętywana jako pozycja lotki w chwili t oraz przepisywane są 
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pozostałe cechy lotki z chwili t-1. Jeśli sieć nie znalazła lotki, to najprawdopodobniej oznacza 

to, że lotka została całkowicie zasłonięta przez zawodnika. Z punktu widzenia skuteczności 

systemu taka sytuacja jest niepożądana, szczególnie gdy zawodnik przesłonił lotkę jak uderzała 

o podłoże. W praktyce sytuacje, gdy zawodnik całkowicie zasłania lotkę zdarzają się, tylko gdy 

sporna sytuacja dotyczy linii końcowej. Na szczęście linie końcową obserwują dwie kamery, 

więc lotka zawsze będzie widoczna na obrazie z przynajmniej jednej kamery. 

Cecha Opis 

kontur (C) Lista punktów, które definiują wydzielony na obrazie obszar (blob) będący kandydatem na 

lotkę. 

prostokąt 

(RECT) 
Lista 4 punktów definiujących rotowany prostokąt, w który wpisany jest kontur C. Wizualnie 

cechę tę zaprezentowano kolorem żółtym na rysunku [Rysunek 26 (prawy)] 

szerokość 

(width) (W) 

Krótszy z boków prostokąta, w który wpisany jest kontur (szerokość lotki wyznaczona przez 

końcówki piór). Wizualnie cechę tę zaprezentowano na rysunku [Rysunek 26] – kolor 

niebieski. 

długość 

(height) (H) 
Dłuższy z boków prostokąta, w który wpisany jest kontur. Wizualnie cechę tę 

zaprezentowano na rysunku [Rysunek 26] – kolor czerwony. 

stosunek 

szerokości 

do długości 

(AR) 

Wartość szerokość/długość 

𝐴𝑅 =
𝑊

𝐻
 

linia 

dopasowania 

(FL) 

Linia, która jest wyznaczona w taki sposób, że suma odległości punktów konturu od tej linii 

jest minimalna. 

kąt (A) Kąt jaki tworzy linia dopasowania z osią oX obrazu w zakresie od 0 do 180 stopni. 

kontur lotki 

(SC) 

Lista 5 punktów wyznaczonych na podstawie cechy RECT, które określają dla danego 

prostokąta kontur lotki. Wizualnie cechę tę zaprezentowano kolorem zielonym na rysunku 

[Rysunek 26] 

Z modelu lotki, wiemy, że pióra są wbite w korek pod kątem 21.28 stopnia w stosunku do 

osi lotki. Zatem wyznaczenie konturu lotki polega na „ścięciu” dwóch boków prostokąta 

RECT pod tym właśnie kątem. 
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odległość 

konturu lotki 

(SC) od 

konturu (C) 

-(DIST2SC) 

Miara ta jest wyznaczana w następujący sposób: 

1. Wyznaczany jest nowy kontur (lista punktów) 

𝐶𝐻𝐶 =  𝑐𝑜𝑛𝑣𝑒𝑥𝐻𝑢𝑙𝑙(𝐶) zgodnie z algorytmem [110] 

2. Dla SC oraz CHC obliczany jest obszar jaki zajmują te kontury zgodnie z 

formułą Green’a 

𝐴𝑆𝐶 = 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝐴𝑟𝑒𝑎(𝑆𝐶) 

𝐴𝐶𝐻𝐶 = 𝑐𝑜𝑛𝑡𝑜𝑢𝑟𝐴𝑟𝑒𝑎(𝐶𝐻𝐶) 

3. Wyznaczana jest wartość DIST2SC jako: 

𝐷𝐼𝑆𝑇2𝑆𝐶 = |1 − 
𝐴𝐶𝐻𝐶

𝐴𝑆𝐶
| 

Tabela 3 Lista cech obliczanych dla każdego kandydata na lotkę 

 

Rysunek 26 Wizualizacja cech lotki (po lewej akumulacyjna ramka różnicowa) 

Na rysunku [Rysunek 27] przedstawiono akumulowaną ramkę różnicową oraz kandydatów na 

lotkę. Kolor oznacza rodzaj filtra, który spowodował odrzucenie kandydata. Każdy z 

kandydatów jest obwiedziony prostokątem, który wyznacza wysokość i szerokość kandydata. 

Poprowadzono też linie dopasowania (FL), które wyznaczają kierunek poruszania się 

kandydata na lotkę. Białym kolorem zaznaczono kandydata, który został ostatecznie wybrany 

jako lotka. Dla tego kandydata wyznaczono też pozycję korka. 

Algorytm śledzący wyznacza korek lotki jako punkt w następujący sposób. 

• Dla kandydata, który został ostatecznie wybrany jako lotka wyznaczamy okalający go 

zrotowany prostokąt (RECT). 
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• Znając kierunek poruszania się lotki, wyznaczamy krótszy z boków tego prostokąta, a 

w jego środku punkt reprezentujący korek. Zwizualizowano to na rysunku [Rysunek 

26] – błękitna kropka 

Wyznaczona w ten sposób pozycja korka jest wystarczająca dla algorytmu śledzącego, ale 

niewystarczająca do wyznaczenia miejsca odbicia lotki o podłoże i oceny czy było pole czy aut. 

Dokładne wyznaczenie miejsca odbicia zostało opisane w rozdziale Algorytm wyznaczania 

korka lotki i miejsca odbicia o podłoże. 

 

Rysunek 27 Akumulacyjna ramka różnicowa (po lewej) oraz kandydaci na lotkę (po prawej) 

Kluczowym elementem rozwiązania jest zestaw filtrów. Filtry są uruchamiane sekwencyjnie 

tak długo jak pozostaje więcej niż jeden kandydat na lotkę. Na rysunku [Rysunek 28] 

przedstawiono schemat algorytmu filtrowania kandydatów. Kolejność filtrów i sposób ich 

działania przedstawia się następująco. 

1. Usuń kandydatów o za dużym rozmiarze. Są to tacy, dla których wysokość w pikselach 

jest większa od wartości progowej MaxHeigth (sposób wyliczenia tej oraz innych 

wartości progowych opisano Sposób wyznaczenie wartości progowych 

wykorzystywanych przez algorytm detekcji lotki) lub szerokość jest większa od wartości 

MaxWidth (na rysunku [Rysunek 27] oznaczone kolorem błękitnym). Wartość 

MaxHeigth zależy od tego ile klatek na sekundę rejestrują kamera (FPS), a dokładnie 
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od tego jak długo jest naświetlany sensor kamery (im dłużej tym wartość MaxHeight 

większa – bo rozmycie lotki jest większe), odległości kamery od boiska oraz od tego z 

jaką rozdzielczością obrazu pracuje kamera (im wyższa rozdzielczość tym wyższa 

wartość MaxHeight). Natomiast wartość MaxWidth zależy od rozdzielczości obrazu i 

odległości kamery od boiska. 

2. Usuń kandydatów o zbyt małych wymiarach. Takich, dla których wysokość jest 

mniejsza od wartości MinHeigth lub szerokość jest mniejsza od wartości MinWidth. 

Wartości te oraz MaxHeight i MaxWidth są wyliczane każdorazowo po ustawieniu 

kamer przy korcie i ustaleniu z jaką ilością klatek na sekundę będzie rejestrowany obraz. 

3. Usuń tych kandydatów, którzy nie poruszają się w kierunku podłoża. Dla każdego 

kandydata mamy obliczony kąt, który z osią X tworzy wektor poruszania się obiektu. 

Jeśli ten kąt nie mieści się w uprzednio wcześniej wyznaczonym zakresie, to taki 

kandydat jest odrzucany. Sposób w jaki wyznaczono zakres tych kątów przedstawiono 

poniżej, w rozdziale Wyznaczenie zakresu kątów jaki może utworzyć trajektoria 

poruszającej się lotki w stosunku do podłoża. 

4. Usuń kandydatów, dla których współczynnik AR – stosunek szerokości (W) do długości 

(H) nie mieści się w ustalonych granicach (MinAspectRatio, MaxAspectRatio).  

5. Usuń kandydatów, których kształt nie przypomina zatemperowanego ołówka. W 

związku z tym, że kamery są ustawione na wysokości około 80 cm i patrzą w dół na 

linie, to lotka, która porusza się w kierunku podłoża na akumulowanej ramce różnicowej 

będzie miała kształt przypominający zatemperowany ołówek (patrz [Rysunek 29 (a)]). 

Ten filtr weryfikuje jak bardzo kształt kandydata odbiega od modelowego kształtu. Jeśli 

wyliczona odległość jest zbyt duża, to dany kandydat jest odrzucany. Szczegółowy opis 

wyliczenia tej miary znajduje się w tabeli [Tabela 3] – DIST2SC. Jeśli wartość tej miary 

jest większa niż 0,7 to kandydat jest odrzucany. Wartość progowa 0,7 została dobrana 

eksperymentalnie. 

6. Jeśli w zbiorze kandydatów pozostał więcej niż jeden kandydat, to porównaj pozycję 

każdego z pozostałych kandydatów z pozycją lotki z poprzedniej ramki. Wybierz tych 

kandydatów, którzy są w odległości mniejszej niż 15cm od pozycji lotki z poprzedniej 

ramki - progowa wartość 15 cm wynika z maksymalnej drogi jaką może przebyć lotka 

w końcowej fazie lotu w czasie od 5ms do 6,6ms. Jeśli po tej operacji nie pozostał w 

zbiorze żaden kandydat, to oznacza, że najprawdopodobniej zgubiono lotkę (została 

przesłonięta) lub śledzono inny obiekt niż lotka (np. skarpetkę zawodnika). W takim 
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przypadku zwróć wszystkich kandydatów i przekaż ich do sieci neuronowej w celu 

dokonania wyboru jednego z nich. 

 

Rysunek 28 Algorytm wyboru lotki spośród kandydatów na lotkę poprzez zastosowanie kolejnych filtrów 
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(a)

 

(b)

 

(c)

 

Rysunek 29 Przykładowe obrazy analizowane przez przedstawiony algorytm. (a) akumulacyjny ramka różnicowa, (b) ramka 

różnicowa, (c) oryginalna ramka zarejestrowana przez kamerę 

Sposób wyznaczenie wartości progowych wykorzystywanych przez algorytm detekcji lotki 

Poniżej opisano sposób wyznaczenia wartości progowych używanych w algorytmie detekcji 

lotki. 

Wartość progowa MaxWidth w pikselach jest wyznaczana zgodnie ze wzorem: 

𝑴𝒂𝒙𝑾𝒊𝒅𝒕𝒉  =  𝑅𝐸𝐴𝐿_𝑊𝐼𝐷𝑇𝐻 ∗  𝑚𝑎𝑥_𝑖𝑚𝑎𝑔𝑒_𝑚𝑜𝑑𝑒𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 

+  𝑀𝐴𝑅𝐺𝐼𝑁_𝐼𝑁_𝑃𝐼𝑋𝐸𝐿𝑆 

gdzie: 

REAL_WIDTH - szerokość lotki w milimetrach określoną przepisami wynosząca 65mm, 

max_image_model_distance_ratio - stosunek szerokości najbliższej kamerze linii w 

pikselach do jej rzeczywistej szerokości w milimetrach 

(40mm) 

MARGIN_IN_PIXELS – stała wartość zapewniająca margines błędu - wyznaczona 

eksperymentalnie na 6 pikseli 

 

Wartość progowa MinWidth w pikselach jest wyznaczana zgodnie ze wzorem: 

𝑴𝒊𝒏𝑾𝒊𝒅𝒕𝒉 =  𝑅𝐸𝐴𝐿_𝑊𝐼𝐷𝑇𝐻 ∗  𝑚𝑖𝑛_𝑖𝑚𝑎𝑔𝑒_𝑚𝑜𝑑𝑒𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 

gdzie: 

min_image_model_distance_ratio - stosunek szerokości najdalszej od kamery linii 

będącej po tej samej stronie siatki co kamera w pikselach do jej rzeczywistej szerokości 

w milimetrach (40mm) 
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Wartość progowa MinHeigth w pikselach jest wyznaczana zgodnie ze wzorem: 

𝑴𝒊𝒏𝑯𝒆𝒊𝒈𝒕𝒉 =  𝑅𝐸𝐴𝐿_𝐻𝐸𝐼𝐺𝐻𝑇 ∗  𝑚𝑖𝑛_𝑖𝑚𝑎𝑔𝑒_𝑚𝑜𝑑𝑒𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜 

gdzie: 

REAL_HEIGHT - wysokość lotki w milimetrach określoną przepisami - 85mm 

 

Wartość progowa MaxHeigth w pikselach jest wyznaczana zgodnie ze wzorem: 

𝑴𝒂𝒙𝑯𝒆𝒊𝒈𝒕𝒉 =  (𝑏𝑙𝑢𝑟_𝑠𝑖𝑧𝑒 +  𝑅𝐸𝐴𝐿_𝐻𝐸𝐼𝐺𝐻𝑇)  ∗  𝑚𝑎𝑥_𝑖𝑚𝑎𝑔𝑒_𝑚𝑜𝑑𝑒𝑙_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑟𝑎𝑡𝑖𝑜  

∗  𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑓𝑟𝑎𝑚𝑒𝑠_𝑖𝑛_𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑑𝑖𝑓𝑓 

gdzie: 

𝑏𝑙𝑢𝑟_𝑠𝑖𝑧𝑒 – wysokość rozmazania krawędzi piór lotki wynikająca z ruchu postępowego 

spowodowana czasem ekspozycji sensora kamery. Przykładowo, jeśli lotka porusza się 

ruchem jednostajnym z prędkością 200km/h, a czas ekspozycji wynosi 1/150 sek., to 

końce piór pokonają drogę 0.37m. blur_size wyznaczono zgodnie ze wzorem: 

𝒃𝒍𝒖𝒓_𝒔𝒊𝒛𝒆 =  
𝑚𝑎𝑥_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦

𝐹𝑃𝑆
 

𝑚𝑎𝑥_𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 – maksymalna prędkość jaką może mieć lotka przy linii w mm/sek. 

wyznaczona na podstawie obserwacji autora - 15m/sek. Nie zaobserwowano prędkości 

wyższych niż 9.72 m/s, ale wyznaczając tę wielkość przyjęto znaczny margines. 

FPS – liczba klatek na sekundę rejestrowana przez kamerę 

𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑓𝑟𝑎𝑚𝑒𝑠_𝑖𝑛_𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑_𝑑𝑖𝑓𝑓 - stała wartość wyznaczona 

eksperymentalnie na 7 

 

Wartość progowa MaxAspectRatio jest wyznaczana zgodnie ze wzorem: 

𝑴𝒂𝒙𝑨𝒔𝒑𝒆𝒄𝒕𝑹𝒂𝒕𝒊𝒐 =
𝑀𝑎𝑥𝐻𝑒𝑖𝑔ℎ𝑡

𝑀𝑎𝑥𝑊𝑖𝑑𝑡ℎ
 

 

Wartość progowa MinAspectRatio jest wyznaczana zgodnie ze wzorem: 

𝑴𝒊𝒏𝑨𝒔𝒑𝒆𝒄𝒕𝑹𝒂𝒕𝒊𝒐 =
𝑀𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡

𝑀𝑖𝑛𝑊𝑖𝑑𝑡ℎ
 

 

Wyznaczenie zakresu kątów jaki może utworzyć trajektoria poruszającej się lotki w stosunku 

do podłoża. 

W zależności od tego, którą linię obserwuje kamera oraz biorąc pod uwagę ograniczenia 

związane ze specyfiką gry w badmintona, można określić zakres możliwych kątów jakie 

poruszająca się w kierunku podłoża lotka może utworzyć z osią oX (podłożem). [Rysunek 30] 
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pokazuje w przybliżony sposób trajektorie dwóch skrajnych uderzeń: high clear – uderzenie 

obronne, net kill – bardzo mocne uderzenie atakujące z bliskiej odległości od siatki, po których 

lotka upada na końcową linię (670 cm od siatki). Jak łatwo obliczyć, w skrajnym przypadku, 

aby lotka upadła w boisku, to trajektoria lotki, która przelatuje nad siatką (o wysokości 155 cm) 

może utworzyć kąt z podłożem od 13 (arctan(155/670) = 13,02) do 90 stopni. Dla linii 

serwisowej, która jest w odległości 198 cm od siatki, rozumując tak samo jak w przypadku linii 

końcowej, będą to wartości od 38 do 90 stopni. Uwzględniając jednakże specyfikę serwisu, 

czyli to że: 

- zawodnik serwujący nie może serwować „z góry”, tylko musi uderzyć lotkę na 

wysokości poniżej 115 cm, 

- musi serwować ze swojego pola serwisowego – czyli w odległości co najmniej 198 cm 

od siatki, 

- stara się zaserwować tuż nad siatką, 

- zawodnik serwujący uderza lotkę dużo lżej niż podczas zbicia z siatki lub uderzenia 

smash, co powoduje, że trajektoria lotki jest paraboliczna, a nie zbliżona do linii prostej 

jak w przypadku uderzenia smash 

oraz obserwacje i doświadczenia autora, pozwalają założyć, że możliwy kąt jaki może utworzyć 

z podłożem lotka upadająca w pobliżu linii serwisowej będzie wynosił od 60 do 75 stopni. Na 

zdjęciu [Rysunek 29c] widać lotkę upadającą w okolicy linii serwisowej po serwisie 

zawodnika. 

 

Rysunek 30 Trajektorie uderzeń high clear i net kill lotki upadającej na końcową linię 

Podobnie rozumując, można wyznaczyć możliwy zakres kątów dla linii bocznej. Maksymalny 

kąt to 90 stopni dla uderzenia wzdłuż linii bocznej. Minimalny kąt zaobserwujemy dla zbicia z 
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siatki po przekątnej i wyliczany jest podobnie - uwzględniając wysokość siatki i szerokość 

boiska (610 cm) – arctan(155/610) = 14.3 stopnia. Przykładowe trajektorie lotki zostały 

zaznaczone na zdjęciu [Rysunek 31]. 

 

Rysunek 31 Przykładowe uderzenia i trajektorie lotki dla uderzeń, które są przez zawodników najczęściej kierowane w 

okolicy linii bocznej 

1 – Uderzenie short net 

2 – Uderzenie net cross 

3 – Uderzenie cross smash 

4 – Uderzenie straight smash 

5 – Uderzenie net kill 

Wyznaczając ostateczne zakresy kątów, autor uwzględnił specyfikę uderzeń oraz wpływ 

klimatyzacji (z obserwacji poczynionych przez autora wynika, że w dużych obiektach 

sportowych poruszające się powietrze może wpłynąć na opadającą lotkę i spowodować jej 

przesunięcie nawet o 30-40cm). 

W szczególności uderzenie net kill (zbicie), dla którego przyjęto trajektorię jako linię prostą, 

bardzo rzadko kończy się upadkiem lotki na linię końcową. Najczęściej lotka po takim 

uderzeniu upada w połowie kortu. Jeśli jednak upadnie na linię końcową, to trajektoria nie 

będzie już linią prostą. Podobnie ze jest ze zbiciem po przekątnej. Jeśli takie zbicie jest wzdłuż 

całej długości siatki to trajektoria nie będzie już linią prostą – po prostu nie da się uderzyć tak 

mocno lotki, aby można było przyjąć linię prostą jako trajektorię. W związku z powyższym 

autor skorygował wyliczone wcześniej zakresy kątów i ostatecznie w filtrze uwzględniającym 

możliwe zakresy kątów przyjęto następujące wartości: 
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Linia Kąt minimalny Kąt maksymalny 

Końcowa 25 95 

Serwisowa 60 80 

Boczna 30 95 

Tabela 4 Zakres kątów w stopniach jakie trajektoria lotki może utworzyć z podłożem 

Wartości te zostały potwierdzone eksperymentalnie. 

Przedstawiona metoda pozwala na szybkie znalezienie lotki na obrazie. Cały proces trwa 

poniżej 2 ms na komputerze wyposażonym w procesor Intel Core i7 9th Gen. W sytuacji, gdy 

nie znaleziono lotki lub pozostało więcej niż 2 kandydatów to uruchamiany jest dodatkowy 

proces wyszukiwania lotki przez sieć neuronową. Proces ten trwa 12ms na komputerze 

wyposażonym w CPU: 9th Gen. Intel® Core™ i7, GPU: NVIDIA® GTX 1080. 

Wytrenowana sieć neuronowa to zmodyfikowany model Tiny Yolo3 [111]. Sieć została 

wytrenowana zestawem danych zebranych podczas turniejów badmintona. Oryginalna sieć 

Tiny Yolo3 oczekuje na wejściu trzykanałowych zdjęć. W związku z tym, że użyto kamer 

szaroodcieniowych, to architektura została zmieniona tak, że sieć akceptuje obrazy 

jednokanałowe. Na rysunku [Rysunek 32] przedstawiono przykładowe obrazy użyte do 

treningu sieci. Dla tej sieci osiągnięto dla zbioru walidacyjnego miarę mAP@0.50 - 94%, recall 

- 77% oraz F1-score14 na poziomie 86%. 

Kluczowe dla całości rozwiązania jest to, aby działało w czasie rzeczywistym dla kamer 

rejestrujących obraz z prędkością do 200 klatek na sekundę. To założenie wymusza średni czas 

przetwarzania poniżej 5ms. Dzięki temu, że sieć neuronowa otrzymuje tylko wycinek całego 

obrazu z kamery oraz dzięki temu, że jest uruchamiana tylko w momencie, gdy pierwszy proces 

nie dał jednoznacznej odpowiedzi to średni czas przetwarzania jednego obrazu jest poniżej 3ms. 

Na rysunku [Rysunek 33] zaprezentowano strukturę algorytmu znajdowania i śledzenia lotki. 

Dwa przykładowe wyniki działania tego algorytmu w postaci filmów w zwolnionym tempie 

można zobaczyć pod adresami: https://drive.google.com/file/d/1rsvcY-

5Q25iN5Hmcv4nW_DXIWq9ZAR7J/view?usp=sharing oraz https://drive.google.com/file/d/1-

Btu3YHeyYYm29MncjXMvjHcUePi2EI_/view?usp=sharing. 

 

 
14 Sposób wyznaczenia miary mAP, recall, precision, F1-score podano w Słowniczek pojęć na stronach 94-95 

mailto:mAP@0.50
https://drive.google.com/file/d/1rsvcY-5Q25iN5Hmcv4nW_DXIWq9ZAR7J/view?usp=sharing
https://drive.google.com/file/d/1rsvcY-5Q25iN5Hmcv4nW_DXIWq9ZAR7J/view?usp=sharing
https://drive.google.com/file/d/1-Btu3YHeyYYm29MncjXMvjHcUePi2EI_/view?usp=sharing
https://drive.google.com/file/d/1-Btu3YHeyYYm29MncjXMvjHcUePi2EI_/view?usp=sharing
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Rysunek 32 Przykładowe obrazy, na których trenowano sieć neuronową 
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Rysunek 33 Schemat algorytmu znajdowania i śledzenia lotki 

Wyniki i ich omówienie 

Zgromadzone dane ground-truth połączono z danymi z trakera i dokonano weryfikacji czy 

pozycja lotki zwrócona przez traker zgadza się z pozycją oznaczoną przez użytkownika. 

Przyjęto, że traker odnalazł lotkę we właściwym miejscu na obrazie, jeśli odległość pozycji 

korka lotki zaznaczonej przez operatora od pozycji wyznaczonej przez traker wyniosła poniżej 

16 pikseli. W przeciwnym razie uznajemy, że traker zgubił lotkę. 

Dla 1524 ramek na których operator zaznaczył lotkę, algorytm wykorzystujący akumulacyjne 

ramki różnicowe (MR) poprawnie znalazł lotkę w 1250 przypadkach. W 137 przypadkach lotka 

została zgubiona przez algorytm MR, a wycinek obrazu z przewidywaną pozycją lotki został 
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przekazany do modułu z siecią neuronową (MNN). Sieć odnalazła lotkę w 100 z 137 

przypadkach. Szczegółowe wyniki dla modułu MR i połączonych moduł MR + MNN 

przedstawiono w tabeli [Tabela 5]. 

Model Macierz pomyłek15 Accuracy Recall 
Preci
-sion 

F1 
Balanced 
accuracy16 

MR 

 

0.98 0.82 1.00 0.90 0.91 

MR 

+ 

MNN 

 

0.98 0.89 1.00 0.94 0.94 

Tabela 5 Wyniki skuteczności opracowanej metody znajdowania lotki 

Ja widać opracowana metoda w 11% zgubiła śledzoną lotkę. Działo się to w dwóch 

przypadkach: 

1. lotka została zgubiona po odbiciu o podłoże, 

2. lotka została zgubiona, ponieważ poruszała się na tle zawodnika. 

Przypadek pierwszy występował zdecydowanie częściej. Na rysunkach [Rysunek 20, Rysunek 

21] zaprezentowano dwa przypadki błędnie wyznaczonej pozycji korka przez traker (żółta 

kropka na końcu żółtej linii dla przykładów z prawej strony). Z punktu widzenia celu badań, 

śledzenie lotki po odbiciu o podłoże nie jest konieczne, gdyż opracowana metoda lokalizacji 

 
15 Definicja podana w Słowniczek pojęć punkt 6, strona 93. 
16 Sposób wyliczenia miar Accuracy, Recall, Precision, F1, Balanced accuracy podano w Słowniczek pojęć na 

stronie 94 
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miejsca upadku lotki w stosunku do linii kortu nie wymaga śledzenia lotki po jej odbiciu. W 

zasadzie można by usunąć z danych takie przypadki i tym samym uzyskać lepsze wyniki (w 

zaimplementowanym ostatecznie rozwiązaniu traker przestaje śledzić lotkę po jej odbiciu). 

Przypadek drugi występował tylko dla nagrań z kamer obserwujących linie tylną (a tych jest 

około 1/3). W przypadku linii bocznych zawodnicy zawsze byli na tyle daleko od lotki, że nigdy 

jej nie przesłaniali. 

Całkowity brak fałszywie pozytywnych alarmów (lotki nie było na nagraniu, a traker ją znalazł) 

wynika ze sposobu gromadzenia danych. Nagrania były rejestrowane tylko podczas realnych 

zawodów i tylko wtedy, gdy zawodnik prosił o weryfikację decyzji sędziego – a wtedy lotka 

jest dość długo w polu widzenia kamery. Sytuacji, gdy na nagraniu nie ma lotki, a jest inny 

poruszający się obiekt (np. zawodnik) było stosunkowo niewiele, a opracowany traker 

doskonale sobie z takimi sytuacjami poradził. 

Wyznaczenie w strumieniu wideo kluczowej ramki, w której nastąpiło odbicie lotki o 

podłoże 

Aby była możliwa ocena, czy lotka upadała w polu gry, czy poza nim, konieczne jest, 

znalezienie w strumieniu wideo ramki, w której faktycznie nastąpiło odbicie lotki o podłoże. 

Autor przeprowadził szereg eksperymentów w celu opracowania skutecznej metody 

wyznaczenia ramki, w której nastąpiło odbicie o lotki o podłoże. Eksperymenty rozpoczęto od 

stworzenia prostego estymatora (Model Podstawowy MP), który na podstawie tego jak zmienia 

się wielkość konturu reprezentującego lotkę na ramce różnicowej decydował czy lotka odbiła 

się od podłoża czy nie. Następnie wyliczono szereg innych cech, które były wejściem do 

różnych algorytmów uczenia maszynowego. Jak już wspomniano wcześniej, istotnym 

ograniczeniem jest czas w związku z tym algorytmy, w których przeprowadzane są 

czasochłonne obliczenia nie mogą zostać wykorzystane w docelowej komercyjnej 

implementacji. 

Zbiór danych 

Do eksperymentów autor przygotował treningowy oraz walidacyjny zbiór danych składający 

się z nagrań zarejestrowanych podczas turniejów badmintona w różnych halach. Kamery 

szaroodcieniowe rejestrowały obraz z prędkością od 150 do 200 klatek na sekundę (FPS) w 

rozdzielczości 800x600 pikseli. W rozdziale 3.1 Gromadzenie danych do eksperymentów 

opisano sposób w jaki przygotowano reprezentatywny zbioru danych. Po wydzieleniu z całego 

zbioru danych zbioru testowego (nagrania z Katowic i Głubczyc) pozostało 11158 próbek z 
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czego liczność klasy 0 (brak odbicia o podłoże) wynosi 10960, a klasy 1 (obicie o podłoże) – 

198. Zbiór ten podzielono na treningowy i walidacyjny w stosunku 75:25. Taki podział 

zapewnia, że zarówno w zbiorze treningowym jak i walidacyjnym są nagrania z kamer 

obserwujących każdą linie – końcowe, boczne, serwisowe. 

Jak widać dane są wysoce niezbalansowane stosunek klasy 0 do 1 wynosi 55:1. Dlatego też do 

oceny skuteczności badanych metod zastosowano miarę balanced accuracy. 

Dane zostały zaanotowane i oznaczono ramkę, w której nastąpiło odbicie o ziemię, oraz pozycję 

korka. Czasami osoba anotująca dane miała problem z oceną w której ramce nastąpiło odbicie 

o kort. Przyczyny były następujące: lotka była w dużej odległości od kamery, lub lotka dotykała 

podłoża przez dwie ramki ślizgając się po korcie [Rysunek 34 a,b]. Wzięto tę niepewność pod 

uwagę podczas oceny skuteczności algorytmu i wyznaczono dokładność stosując dwa kryteria: 

1) algorytm wyznaczył moment odbicia w dokładnie tej samej ramce co ground-truth,  

2) algorytm wyznaczył moment odbicia z tolerancją jednej ramki w stosunku do ground-

truth. 

Na rysunku [Rysunek 34] zaprezentowano przykładowe zestawy ramek, które były w zbiorze 

danych wykorzystanym w eksperymentach. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 

Rysunek 34 Przykładowe zestawy kolejnych ramek ze strumienia wideo, które znalazły się w zbiorze danych wykorzystanym w 

eksperymentach 

W momencie, gdy lotka odbija się od podłoża jej prędkość poruszania się gwałtownie maleje. 

W przypadku, gdy lotka ślizga się po korcie jej prędkość również maleje, ale nie tak gwałtownie 

jak w przypadku odbicia. To czy lotka odbije się od podłoża, czy też przez chwilę prześlizgnie 

po nim, zależy głównie od uderzenia zawodnika (tego pod jakim kątem lotka upada na podłoże) 

oraz od współczynnika tarcia maty na której grają zawodnicy. Certyfikowane maty sportowe 

powinny spełniać normę EN 14904, która dopuszcza pewien zakres współczynnika tarcia jaki 

powinna spełniać taka mata (może się różnić nawet o ponad 30%). Nie bez znaczenia na ten 

współczynnik ma również zużycie maty. Ze względu na specyfikę gry sytuacje, w których lotka 

upada na kort pod mały kątem i się ślizga, są stosunkowo rzadkie. W większości przypadków 

lotka odbija się sprężyście od podłoża.  
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Model podstawowy 

Model podstawowy - MP zbudowano na podstawie obserwacji, że w momencie odbicia lotka 

gwałtownie zmniejsza swoją prędkość. Obserwując ramki różnicowe, można zauważyć, że 

liczba pikseli reprezentujących różnice pomiędzy kolejnymi ramkami o numerach t-1 i t będzie 

najmniejsza dla ramki w momencie odbicia. Aby uniezależnić się od odległości lotki od kamery 

wyznaczono współczynnik diff_size_change_ratio 𝐷 =
𝐷𝑆(𝑡)

𝐷𝑆(𝑡−1)
 , który określa jak gwałtownie 

zmieniła się liczba pikseli na ramce różnicowej pomiędzy ramkami t-1 i t. DS(t) – oznacza 

liczbę pikseli na ramce różnicowej o numerze t. Im wartość bliższa zeru tym gwałtowniejsza 

zmiana prędkości poruszania się lotki. Na rysunku [Rysunek 35] przedstawiono przykładową 

sekwencję obrazów zawierającą odbicie lotki o podłoże oraz wartości współczynnika D. 

 

Rysunek 35 Ramki różnicowe przed odbiciem, w momencie odbicia i po odbiciu oraz wartość współczynnika D. Czerwoną 

obwiednią zaznaczono ramkę w której nastąpiło odbicie o podłoże. 

Na podstawie treningowego zbioru danych wyznaczono wartość progową współczynnika D dla 

których miara balanced accuracy miała największą wartość. Osiągnięto wartość:  – 𝐷𝑚𝑖𝑛 =

0.88. Jeśli wartość D spełnia równanie: 𝐷 < 𝐷𝑚𝑖𝑛 , to model zwraca informacje o tym, że w 

danej ramce nastąpiło odbicie o podłoże, w przeciwnym wypadku – brak odbicia. Skuteczność 

takiego modelu przedstawiono w tabeli [Tabela 6] 
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Model Macierz pomyłek Accuracy Recall Precision F1 
Balanced 
accuracy 

MP 

 

0.761 0.582 0.053 0.093 0.675 

MP z 

tolerancją 

jednej 

ramki 

 

0.772 0.770 0.062 0.123 0.776 

Tabela 6 Skuteczność modelu MP 

Jak widać skuteczność modelu MP nie jest wyjątkowo wysoka (szczególnie niska jest 

precyzja), za to obliczeniowo model ten jest wyjątkowo mało wymagający. W celu poprawy 

wyników, autor podjął dalsze prace badawcze i wyliczył więcej cech i zbadał, które z nich są 

najbardziej użyteczne oraz, które ze znanych modeli uczenia maszynowego dają najlepsze 

wyniki. 

Badanie modeli uczenia maszynowego 

Z punktu widzenia modeli uczenia maszynowych, kluczowe jest wyznaczenie takich cech, aby 

model mógł na ich podstawie w optymalny sposób dokonać klasyfikacji. Duża liczba modeli 

opisywanych w literaturze wymaga, aby dane były zbalansowane. Jeśli dane są 

niezbalansowane, to przed treningiem modelu należy je odpowiednio zbalansować. Metody 

balansowania danych można podzielić na dwie grupy: powiększania klasy mniejszościowej 

(oversampling) i zmniejszania klasy większościowej (undersampling). Do najpopularniejszych 

metod balansowania danych należą random unersampling, random oversampling, smote, tomek 

links, near miss. Autor w ramach badań zweryfikował skuteczność wielu modeli wraz różnymi 

metodami balansowania danych. Wszystkie implementacje opisywanych modeli oraz metod 
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balansowania danych zostały pobrane z biblioteki scikit-learn [112].  Wyniki przedstawiono w 

tabeli [Tabela 9]. Kolejnym etapem badań było sprawdzenie, czy dla modeli, które dały 

najlepsze wyniki ich wersje dla danych niezbalansowanych dadzą lepsze wyniki. Wyniki tych 

eksperymentów przedstawiono w tabeli [Tabela 10]. 

Wyznaczenie zbioru cech 

Cechy zostały wyliczone na podstawie przetworzonych danych ze strumienia wideo takich jak 

wspomniane wcześniej ramki różnicowe i akumulacyjne ramki różnicowe. W tabeli [Tabela 7] 

przedstawiono wyznaczone cechy, a na rysunku [Rysunek 36] wizualizację wybranych cech. 

Cecha Opis 

diff_size_change_ratio (D) 

Jak bardzo zmieniła się liczba pikseli reprezentujących różnicę pomiędzy 
kolejnymi ramkami ze strumienia wideo. Szczegółowo opisane w 
rozdziale Model podstawowy. 

angle_change_ratio 
Jak zmienił się kąt który tworzy trajektoria poruszającej się lotki z 

podłożem. Obliczony jako: 
𝑘ą𝑡 𝑤 𝑟𝑎𝑚𝑐𝑒 𝑏𝑖𝑒żą𝑐𝑒𝑗

𝑘ą𝑡 𝑤 𝑟𝑎𝑚𝑐𝑒 𝑝𝑜𝑝𝑟𝑧𝑒𝑑𝑛𝑖𝑒𝑗
  

acc_diff_to_diff_ratio 
Obliczane podobnie jak diif_size_change_ratio z tą różnicą, że źródłem 
danych jest akumulowana ramka różnicowa, a nie ramka różnicowa 

dist_travelled 

W pikselach euklidesowa odległość jaką pokonał korek lotki w czasie 
1

𝐹𝑃𝑆
 . 

Czyli odległość pomiędzy pozycją korka w ramce n a ramce poprzedniej – 
n-1. 

prev_3_frames_dist_travelled 
W pikselach euklidesowa odległość pomiędzy pozycją korka w ramce 
bieżącej: n, a ramce o 3 wcześniejszej: n-3. 

local_min_from_3_points 

Ta wartość mówi jak bardzo zmienia się wartość diff_size_change_ratio 
na przestrzeni 3 ramek. Obliczona jako:  (prev_size_change_ratio - 
diff_size_change_ratio) + (next_diff_size_change_ratio - 
diff_size_change_ratio),  
gdzie:  
prev_size_change_ratio  oznacza wyliczone diff_size_change_ratio w 
ramce n-1, a next_diff_size_change_ratio oznacza wyliczone 
diff_size_change_ratio w ramce n+1  

local_min 

Wartość będąca sumą diff_size_change_ratio dla kolejnych ramek, dla 
których diff_size_change_ratio maleje. Można to traktować jako swego 
rodzaju wartość gradientu spadku diff_size_change_ratio. Algorytm 
obliczenia tej cechy reprezentuje poniższy pseudo kod: 
local_min = 0, i=current_frame_index -1 
prev_size_change_ratio = diff_size_change_ratio for frame i 
while prev_size_change_ratio >  diff_size_change_ratio: 
   local_min += (prev_size_change_ratio -  diff_size_change_ratio) 
   i = i-1 
   prev_size_change_ratio = diff_size_change_ratio for frame i 
 
i=current_frame_index +1 
next_diff_size_change_ratio = diff_size_change_ratio for frame i 
while next_diff_size_change_ratio > diff_size_change_ratio: 
    local_min += (next_diff_size_change_ratio -  diff_size_change_ratio) 
   i = i+1 
   next_diff_size_change_ratio = diff_size_change_ratio for frame i  

aspect_ratio Obliczone jako: 
ℎ𝑒𝑖𝑔ℎ𝑡

𝑤𝑖𝑑𝑡ℎ
 

height_change_ratio Obliczone jako: 
ℎ𝑒𝑖𝑔ℎ𝑡

ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑙𝑎 𝑟𝑎𝑚𝑘𝑖 𝑝𝑜𝑝𝑟𝑧𝑒𝑑𝑛𝑖𝑒𝑗
 

width_change_ratio Obliczone jako: 
𝑤𝑖𝑑𝑡ℎ

𝑤𝑖𝑑𝑡ℎ 𝑑𝑙𝑎 𝑟𝑎𝑚𝑘𝑖 𝑝𝑜𝑝𝑟𝑧𝑒𝑑𝑛𝑖𝑒𝑗
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dist_travelled_wrt_width Obliczone jako:
𝑑𝑖𝑠𝑡_𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑

𝑤𝑖𝑑𝑡ℎ
 

prev_3_frames_dist_travelled_wrt_width Obliczone jako: 
𝑝𝑟𝑒𝑣_3_𝑓𝑟𝑎𝑚𝑒𝑠_𝑑𝑖𝑠𝑡_𝑡𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑑

𝑤𝑖𝑑𝑡ℎ
 

Tabela 7 Cechy oraz sposób ich wyznaczenia. Pogrubioną czcionką zaznaczono te, które ostatecznie zostały wybrane. 

 

 

Rysunek 36 Sposób wyznaczenia cech width, height, pozycji korka i obszaru zainteresowania. Od lewej – akumulacyjna 

ramka różnicowa, oryginalna ramka ze strumienia wideo, ramka różnicowa. ROI jest to obszar zdefiniowany jako prostokąt 

o boku 128 pikseli o środku w punkcie (c_x, c_y) gdzie (c_x, c_y) jest pozycją korka zwróconą przez traker. 

Z wykorzystaniem nadzorowanej metody rekursywnego usuwania cech dokonano wyboru 

cech. Przeprowadzono również 10 eksperymentów z różnymi zestawami cech. Wyniki tych 

eksperymentów dla klasyfikatora BalancedRandomForrest zaprezentowano w tabeli [Tabela 

8]. Dla pozostałych testowanych klasyfikatorów wyniki były podobne. Zestaw cech nr 8 okazał 

się najlepszy. Dla wybranego zestawu cech policzono ich korelacje [Rysunek 37] oraz wpływ 

jaki mają na model [Rysunek 38]. 

Nr Zestaw cech 
Balanced 
accuracy 

0 

diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled, 

prev_3_frames_dist_travelled, dist_trajectory_line_from_prev_3_frames, 

local_min,local_min_from_3_points,aspect_ratio,height_change_ratio,width_change_ratio,dist_tr

avelled_wrt_width, prev_3_frames_dist_travelled_wrt_width 

0.843 

1 
diff_size_change_ratio, acc_diff_to_diff_ratio, dist_travelled,prev_3_frames_dist_travelled, 

local_min, local_min_from_3_points,aspect_ratio, height_change_ratio, width_change_ratio 
0.838 

2 
diff_size_change_ratio, acc_diff_to_diff_ratio, dist_travelled,prev_3_frames_dist_travelled, 

local_min,aspect_ratio, height_change_ratio, width_change_ratio 
0.769 
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3 

diff_size_change_ratio, acc_diff_to_diff_ratio, 

dist_travelled_wrt_width,prev_3_frames_dist_travelled, local_min, 

local_min_from_3_points,aspect_ratio, height_change_ratio, 

width_change_ratio,prev_3_frames_dist_travelled_wrt_width 

0.846 

4 

diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled, 

prev_3_frames_dist_travelled, 

dist_trajectory_line_from_prev_3_frames,local_min,local_min_from_3_points 

0.840 

5 
diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled, 

prev_3_frames_dist_travelled, local_min,local_min_from_3_points 
0.863 

6 diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled, 

prev_3_frames_dist_travelled, local_min,local_min_from_3_points,aspect_ratio 

0.850 

7 diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled, 

prev_3_frames_dist_travelled, local_min,local_min_from_3_points,height_change_ratio 

0.842 

8 
diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled_wrt_width, 

prev_3_frames_dist_travelled_wrt_width, 

local_min,local_min_from_3_points,height_change_ratio 

0.851 

9 
diff_size_change_ratio, acc_diff_to_diff_ratio, dist_travelled_wrt_width, 

prev_3_frames_dist_travelled_wrt_width, 

local_min,local_min_from_3_points,height_change_ratio 

0.849 

Tabela 8 Porównanie miar balanced accuracy dla różnych zestawów cech modelu 

BalancedRandomForestClassifier(n_estimators= 226, criterion= "entropy", max_depth= 11, max_features= 0.3, 

min_samples_leaf=1, sampling_strategy= "not minority", bootstrap= True, oob_score= True, replacement= False, 

random_state=0, n_jobs=-1) 

 

 

Rysunek 37 Współczynnik korelacji Pearson-a dla wybranych cech 
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Rysunek 38 Wpływ poszczególnych cech na wynik klasyfikacji dla modelu BalancedRandomForest 

Wyniki 

W pierwszej kolejności, autor zbadał jakie wyniki dla wszystkich cech dają popularne modele 

klasyfikacji. Ze względu na niezbalansowany zbiór danych miary F1, Precision, Recall są 

obliczone jako średnia ważona uwzględniająca liczność klasy 0 i 1. Szczegółowo wyniki 

przedstawiono w tabeli [Tabela 9]. Do dalszych eksperymentów zostały wybrane modele, które 

dały najlepsze rezultaty. Kolejne testy zostały przeprowadzone dla tych modeli, które są 

przystosowane do niezbalansowanych danych - BalancedRandomForest oraz 

BalancedBaggingClassifier – [Tabela 10]. Ostatnim krokiem była optymalizacja 

hyperparametrów zarówno dla wersji z dokładnym rozpoznaniem przez klasyfikator ramki, w 

której nastąpiło odbicie jak i z rozpoznaniem momentu odbicia z tolerancją jednej ramki. 

Wyznaczone optymalne wartości hyperparametrów przedstawiono w tabelach [Tabela 11] 

(dokładny moment odbicia) oraz [Tabela 14] (moment odbicia z tolerancją jednej ramki). 

Ostateczne wyniki przedstawiono w tabeli [Tabela 12] (dokładny moment odbicia) oraz [Tabela 

15] (moment odbicia z tolerancją jednej ramki). Wykonane eksperymenty polegające na 

wybraniu najważniejszych cech oraz optymalizacji parametrów klasyfikatora wyznaczającego 

dokładny momentu odbicia lotki o podłoże pozwoliły poprawić wynik z 0.843 do 0.873 dla 

miary ballanced accuracy i modelu BalancedRandomForest. Podobnie dla modelu 

BalancedBaggingClassifier – optymalizacja hyperparmetrów pozwoliła na poprawę miary 

ballanced accuracy z 0.849 do 0.878. Podsumowując wynik przeprowadzonych 

eksperymentów, zamiast balansować dane przed treningiem modelu, lepiej jest zastosować 

model, który sam podczas treningu na podstawie liczności klas dokona odpowiedniej strategii 

samplowania danych oraz przydzielania odpowiednich wag. Przykładowo, dla modelu 

RandomForrest po zbalansowaniu danych uzyskano ballanced accuracy na poziomie 0.781, a 
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dla BallancedRandomForest [113], gdzie każde drzewo ma odpowiednio zbalansowaną próbkę 

danych- 0.843. Czyli o 6% lepszy wynik. 

Warto nadmienić, że wybranie najlepszych cech oraz optymalizacja hyperparametrów modeli 

pozwoliły poprawić wynik o 3%. 

Klasyfikator Metoda balansowania F1 Precision Recall Accuracy Bal acc 

GaussianNB 

RandomOverSampler 0,033 0,017 0,907 0,144 0,519 

ADASYN 0,034 0,017 0,907 0,162 0,529 

NearMiss 0,031 0,016 0,481 0,507 0,495 

SMOTE 0,034 0,017 0,907 0,168 0,532 

AllKNN 0,036 0,018 0,944 0,178 0,555 

RandomUnderSampler 0,036 0,018 0,944 0,172 0,552 

TomekLinks 0,034 0,017 0,907 0,168 0,531 

XGBClassifier 

RandomOverSampler 0,217 0,263 0,185 0,978 0,588 

ADASYN 0,172 0,116 0,333 0,948 0,646 

NearMiss 0,041 0,021 0,870 0,350 0,606 

SMOTE 0,197 0,137 0,352 0,954 0,658 

AllKNN 0,274 0,317 0,241 0,979 0,616 

RandomUnderSampler 0,100 0,054 0,796 0,770 0,783 

TomekLinks 0,141 0,294 0,093 0,982 0,544 

DecisionTree 

RandomOverSampler 0,202 0,185 0,222 0,972 0,603 

ADASYN 0,177 0,110 0,463 0,931 0,701 

NearMiss 0,038 0,019 0,815 0,326 0,567 

SMOTE 0,174 0,107 0,463 0,929 0,700 

AllKNN 0,123 0,092 0,185 0,957 0,578 

RandomUnderSampler 0,076 0,040 0,704 0,723 0,713 

TomekLinks 0,137 0,117 0,167 0,966 0,573 

RandomForest 

RandomOverSampler 0,092 0,273 0,056 0,982 0,527 

ADASYN 0,274 0,217 0,370 0,968 0,674 

NearMiss 0,043 0,022 0,944 0,314 0,624 

SMOTE 0,257 0,209 0,333 0,969 0,656 

AllKNN 0,034 0,250 0,019 0,983 0,509 

RandomUnderSampler 0,099 0,053 0,796 0,766 0,781 

TomekLinks 0,000 0,000 0,000 0,983 0,499 

HistGradientBoost 

RandomOverSampler 0,270 0,236 0,315 0,973 0,649 

ADASYN 0,196 0,123 0,481 0,936 0,713 

NearMiss 0,041 0,021 0,889 0,322 0,601 

SMOTE 0,224 0,143 0,519 0,942 0,734 

AllKNN 0,141 0,194 0,111 0,978 0,552 

RandomUnderSampler 0,105 0,056 0,815 0,776 0,795 

TomekLinks 0,061 0,167 0,037 0,981 0,517 

BaggingClassifier 

RandomOverSampler 0,205 0,265 0,167 0,979 0,580 

ADASYN 0,209 0,140 0,407 0,950 0,683 

NearMiss 0,044 0,023 0,870 0,396 0,629 
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SMOTE 0,169 0,116 0,315 0,950 0,638 

AllKNN 0,086 0,188 0,056 0,981 0,526 

RandomUnderSampler 0,097 0,052 0,759 0,773 0,766 

TomekLinks 0,065 0,250 0,037 0,983 0,518 

LinearSVC 

RandomOverSampler 0,036 0,018 0,926 0,201 0,557 

ADASYN 0,036 0,018 0,926 0,205 0,560 

NearMiss 0,027 0,014 0,333 0,616 0,477 

SMOTE 0,036 0,019 0,926 0,208 0,561 

AllKNN 0,000 0,000 0,000 0,984 0,500 

RandomUnderSampler 0,040 0,021 0,352 0,730 0,544 

TomekLinks 0,000 0,000 0,000 0,984 0,500 

NuSVC 

RandomOverSampler 0,033 0,017 0,796 0,235 0,511 

ADASYN 0,032 0,016 0,796 0,221 0,504 

NearMiss 0,034 0,018 0,500 0,539 0,520 

SMOTE 0,032 0,016 0,796 0,222 0,505 

RandomUnderSampler 0,033 0,017 0,963 0,103 0,526 

Tabela 9 Porównanie wyników różnych modeli uczenia maszynowego wraz z uwzględnieniem metod balansowania danych 

 

Klasyfikator F1 Precision Recall Accuracy 
Balanced accuracy 

- wybrane cechy 

BalancedBaggingClassifier 0.332 0.206 0.840 0.857 0.849 

BalancedRandomForestClassifier 0.257 0.149 0.920 0.776 0.843 

BalancedBaggingClassifier 
estimator=HistGradientBoostingClassifier 

0.325 0.204 0,80 0.860 0.831 

Z tolerancją jednej ramki 

BalancedBaggingClassifier 0.415 0.265 0.960 0.886 0.921 

BalancedRandomForestClassifier 0.296 0.175 0.960 0.807 0.880 

BalancedBaggingClassifier 
estimator=HistGradientBoostingClassifier 

0.412 0.265 0.920 0.889 0.904 

Tabela 10 Porównanie wyników 3 klasyfikatorów przystosowanych do niezbalansowanych danych dla wybranego zestawu 

cech 

 

Wyznaczone hyperparametry dla modeli 

BalancedBaggingClassifier(n_estimators=47, max_features=0.7547689530533495, bootstrap=True, 
replacement=True, sampling_strategy='not minority', random_state=0, n_jobs=-1) 

BalancedRandomForestClassifier(n_estimators= 124, criterion= 'entropy', max_depth= 14, max_features= 
'log2', min_samples_leaf= 1, sampling_strategy= 'all', bootstrap= False, oob_score= False, replacement= 
False, random_state=0, n_jobs=-1) 
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BalancedBaggingClassifier(estimator=HistGradientBoostingClassifier(random_state=0,  
                                                                                   class_weight='balanced', 
                                                                                   learning_rate=0.05894441800895756, 
                                                                                   max_iter=355, 
                                                                                   min_samples_leaf=10), 
                                          n_estimators=249, 
                                          sampling_strategy="all",  
                                          random_state=0, n_jobs=-1) 

Tabela 11 Wartości hyperparametrów dla dokładnej klasyfikacji momentu odbicia lotki o podłoże 

 

Klasyfikator F1 Precision Recall Accuracy 
Balanced 

accuracy – 
wybrane cechy 

BalancedBaggingClassifier 0.377 0.240 0.88 0.877 0.878 

BalancedRandomForestClassifier 0.296 0.176 0.94 0.811 0.873 

BalancedBaggingClassifier 
estimator=HistGradientBoostingClassifier 

0.365 0.233 0.84 0.876 0.859 

Tolerancja jednej ramki 

BalancedBaggingClassifier 0.456 0.301 0.94 0.905 0.922 

BalancedRandomForestClassifier 0.336 0.204 0.96 0.840 0.897 

BalancedBaggingClassifier 
estimator=HistGradientBoostingClassifier 

0.468 0.309 0.96 0.908 0.932 

Tabela 12 Porównanie wyników klasyfikatorów po optymalizacji parametrów dla dokładnej klasyfikacji momentu odbicia o 

podłoże 

 

Macierze pomyłek – wartości hyperparametrów zoptymalizowane dla klasyfikatorów wyznaczających 
dokładny moment odbicia o podłoże 

Dokładny moment odbicia Moment odbicia z dokładnością do jednej ramki 

BalancedBaggingClassifier 
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 BalancedRandomForestClassifier 

 

 

BalancedBaggingClassifier estimator=HistGradientBoostingClassifier 

 
 

Tabela 13 Macierze pomyłek dla testowanych klasyfikatorów po optymalizacji hyperparametrów przedstawionej w tabeli [] 

 

Wyznaczone hyperparametry dla modeli 

BalancedBaggingClassifier( 
                n_estimators=156, max_features=0.8532097379055883, bootstrap=True, replacement=True, 
sampling_strategy='all', random_state=0, n_jobs=-1), 

BalancedRandomForestClassifier( 
                n_estimators= 19, criterion= 'entropy', max_depth= 12, max_features= None, min_samples_leaf= 1, 
sampling_strategy= "all", bootstrap= False, oob_score= False, replacement= True, random_state=0, n_jobs=-
1) 
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BalancedBaggingClassifier(estimator=HistGradientBoostingClassifier(random_state=0,  
                                                                                   class_weight='balanced', 
                                                                                   learning_rate=0.10406405953447745, 
                                                                                   max_iter=438, 
                                                                                   min_samples_leaf=10), 
                                          n_estimators=198, 
                                          sampling_strategy="all",  
                                          random_state=0, n_jobs=-1) 

Tabela 14 Wyznaczone hyperparametry dla klasyfikatorów z tolerancją jednej ramki 

Classifier F1 Precision Recall Accuracy 
Balanced 
accuracy 

BalancedBaggingClassifier 0.434 0.304 0.76 0.916 0.841 

BalancedRandomForestClassifier 0.369 0.234 0.86 0.876 0.868 

BalancedBaggingClassifier 
estimator=HistGradientBoostingClassifier 

0.362 0.232 0.82 0.878 0.850 

Tolerancja jednej ramki 

BalancedRandomForestClassifier 0.602 0.443 0.94 0.947 0.944 

BalancedBaggingClassifier 0.459 0.301 0.96 0.904 0.931 

BalancedBaggingClassifier 
estimator=HistGradientBoostingClassifier 

0.475 0.315 0.96 0.910 0.934 

Tabela 15 Porównanie wyników klasyfikatorów po optymalizacji parametrów dla klasyfikacji momentu odbicia o podłoże z 

tolerancją jednej ramki 

 

Macierze pomyłek – wartości hyperparametrów zoptymalizowane dla klasyfikatorów wyznaczających 
moment odbicia o podłoże z tolerancją jednej ramki 

Dokładny moment odbicia Moment odbicia z dokładnością do jednej ramki 

BalancedBaggingClassifier 
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 BalancedRandomForestClassifier 

 

 

BalancedBaggingClassifier estimator=HistGradientBoostingClassifier 

 

 

Tabela 16 Macierze pomyłek klasyfikatorów po optymalizacji hyperparametrów dla klasyfikacji momentu odbicia o podłoże z 

tolerancją jednej ramki 

Model BalancedRandomForest uzyskał lepszy wynik od BalancedBaggingClassifier, dla 

klasyfikacji z tolerancją jednej ramki i ten model wykorzystano w końcowym rozwiązaniu. Jeśli 

chodzi o wydajność obliczeniową, to z wykorzystaniem CPU Intel i9 model 

BalancedRandomForest średnio na predykcję potrzebował 0.024 ms, a model 

BlancedBaggingClassifier 0.394 ms 

Wyniki - dyskusja 

Dane wykorzystane do trenowania modeli pochodzą z modułu śledzenia i rozpoznawania lotki. 

Moduł ten zwraca pozycję korka do badmintona z pewną dokładnością, Z tego względu 

porównanie pozycji korka pomiędzy dwiema sąsiadującymi ramkami wideo nie jest 

wystarczającym kryterium do oceny czy nastąpiło odbicie o podłoże, czy też nie. Opisany na 



92 

początku tego rozdziału Model Podstawowy ma niezadowalającą skuteczność z tego powodu, 

że na liczbę pikseli w ramce różnicowej oprócz prędkości poruszania się lotki ma wpływ 

również ruch wirowy lotki oraz cień, który rzuca na podłoże. Aby osiągnąć wyższą 

skuteczność, autor wyznaczył wiele cech, które pozwoliły na poprawienie skuteczności modelu 

z 67% do 88% (ballanced accuracy). Ze względu na to, że podczas anotacji momentu odbicia 

osoba anotująca nie zawsze była pewna czy odbicie nastąpiło w zaznaczonej przez nią ramce 

czy poprzedniej/następnej to zweryfikowano też skuteczność modelu z tolerancją jednej ramki. 

Z punktu widzenia całości rozwiązania pomyłka modelu w wyznaczeniu momentu odbicia lotki 

o podłoże o jedną ramkę jest istotna tylko wtedy, gdy lotka poruszała się przed odbiciem bardzo 

płasko i szybko oraz odbiła się bardzo blisko krawędzi linii. W pozostałych przypadkach 

dokładne wyznaczenie pozycji korka (opisane w dalszej części rozprawy) w stosunku do linii 

kortu nie będzie obarczone na tyle istotnym błędem, aby odpowiedź systemu czy lotka upadła 

w korcie czy poza nim była niezgodna z prawdą. Zezwalając na tolerancję jednej ramki 

skuteczność zaproponowanego rozwiązania wzrasta do 94% dla miary ballanced accuracy. 

Autor przeanalizował przypadki, dla których model pomylił się w wyznaczeniu kluczowej 

ramki o więcej niż 2 ramki. Zasadniczo błędne przypadki można podzielić na dwie grupy: 

1) Pomyłka bardzo duża - kilkanaście, kilkadziesiąt ramek. 

2) Pomyłka niewielka – kilka ramek. 

Przypadków z grupy pierwszej jest kilka. Są to sytuacje, w których model jako kluczową ramkę 

wyznaczył tę w której nastąpiło drugie odbicie lotki o podłoże. Jeśli chodzi o drugą grupę, to 

pomyłki są spowodowane cieniem rzucanym przez lotkę, który może być widoczny na ramce 

różnicowej [Rysunek 36] co ma wpływ na wartość cechy diff_size_change_ratio. W tej grupie 

znajdują się też specyficzne sekwencje wideo, na których zarejestrowano uderzenie lotki o 

parkiet po płaskim uderzeniu smecz do bocznej linii kortu. W takich przypadkach cechy 

angle_change_ratio, height_change_ratio, dist_travelled_wrt_width mają podobne wartości, 

jak wtedy gdy lotka leci nad kortem. Autor nie eksplorował innych rozwiązań, które 

pozwoliłyby na poprawę skuteczności opracowanego modelu w tym przypadku z 

następujących powodów: 

a) problem występuje tylko w opisanym specyficznym przypadku, 

b) pomyłka o kilka ramek z punktu widzenia decyzji, czy było pole, czy aut ma znaczenie 

tylko, gdy lotka po uderzeniu leci płasko i po przekątnej, 
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c) ze statystyk zebranych przez autora wynika, że opisanych powyżej sytuacji jest poniżej 

6%. 

Autor ma świadomość, że jest tu miejsce na poprawę i być może zastosowanie sieci 

neuronowych pozwoliłoby na osiągnięcie lepszych rezultatów. 

Jeśli chodzi o poprawę skuteczności w przypadku, gdy model zwrócił ramkę w której nastąpiło 

drugie odbicie to autor proponuje następującą modyfikację mającą na celu obsługę 

wspomnianego scenariusza. 

Jeśli w danej sekwencji model zwrócił prawdopodobieństwo odbicia o podłoże większe niż 

50% dla kilku ramek, to nie jest zwracana ramka z najwyższym prawdopodobieństwem, tylko 

dokonywana jest korekta na tej zasadzie, że promowane są odbicia wcześniejsze i te, które były 

bliżej linii kortu. Niestety ze względu na brak czasu autor nie mógł dokładnie zbadać 

przedstawionej koncepcji. 

Autor podjął natomiast próbę usuwania cienia rzucanego przez lotkę. Metoda polegała na 

zbadaniu jak zmniejsza się jasność pikseli w określonym obszarze zainteresowań. Niestety 

rezultaty jakie zostały uzyskane nie były zadowalające, a poprawa ich wymagałaby ilości pracy 

niewspółmiernej do przewidywanych korzyści. 

3.4. Wyznaczenie miejsca odbicia się lotki o ziemię w stosunku do referencyjnych 

linii kortu 

Aby ocenić, czy lotka upadła w polu gry, czy poza nim konieczne jest wyznaczenie na obrazie 

obszaru pola gry oraz miejsca upadku lotki. Autor nie zajmował się automatycznym 

wyznaczeniem obszaru pola gry. Referencyjne linie kortu zostały wyznaczone manualnie. 

W celu wyznaczenia miejsca odbicia lotki od podłoża koniecznie jest precyzyjne wyznaczenie 

korka lotki. Ze względu swój kształt lotka zawsze odbija się od podłoża korkiem, więc do 

podjęcia decyzji pole/aut nie jest konieczna segmentacja całej lotki. Segmentacja całej lotki jest 

problematyczna z kilku powodów: 

• Nawet w momencie odbicia lotki od podłoża lotka jest delikatnie rozmyta, ponieważ 

układ piór lotki powoduje, że lotka w trakcie lotu wiruje. Z tego powodu lotka nie ma 

ostrych krawędzi i większość popularnych metod ma problemy z precyzyjną 

segmentacją. 

• Biały korek i białe pióra mogą zlewać się z białą linią kortu – patrz [Rysunek 39]. Warto 

zauważyć, że najczęściej zawodnik żąda weryfikacji decyzji sędziego liniowego, 
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właśnie wtedy gdy lotka upada w pobliżu linii (czyli jest widoczna na jej tle). Warto 

zaznaczyć, że tego problemu nie ma w tenisie gdzie linie są białe, a piłka 

fluorescencyjnie żółta. 

Autor sprawdził jak z segmentacją lotki radzą sobie klasyczne algorytmy takie algorytmy jak 

grabCut [90] oraz algorytmy wykorzystujące sieci neuronowe takie jak Segment Anything 

Model [50]. 

Na rysunku [Rysunek 39] przedstawiono wynik segmentacji lotki z wykorzystaniem algorytmu 

grabCut. 

Na rysunkach [Rysunek 40, Rysunek 43] przedstawiono wynik działania Segment Anything 

Model  – SAM, uznawanego za state-of-the-art. 

Badając wyniki zwracane przez SAM dokonano dwóch rodzajów eksperymentów: 

1. Algorytmowi SAM dokładnie wskazano korek od lotki (błękitna kropka) i poproszono 

o jej segmentacje – [Rysunek 40]. W wyniku otrzymano wysegmentowaną lotkę - 

[Rysunek 41]. 

2. Wskazując obszar (biały prostokąt), w którym należy dokonać segmentacji (lotka jest 

w centrum obszaru zainteresowań) – [Rysunek 42] ) jako wynik segmentacji otrzymano 

to co jest widoczne na rysunku [Rysunek 43]. 

Algorytm śledzący lotkę wyznacza obszar zainteresowań, w którym jest lotka, więc podanie 

dokładnej pozycji korka lotki algorytmowi Segment Anything Model jest niemożliwe i w 

praktyce nie da się uzyskać wyniku przedstawionego na rysunku [Rysunek 41], możliwe jest 

uzyskanie wyniku zaprezentowanego na [Rysunek 43]. Ze względu na niezadowalające wyniki 

uzyskane autor zdecydował się na opracowanie własnego innowacyjnego algorytmu 

wyznaczania korka lotki do badmintona a szczegółowe porównanie proponowanej przez autora 

metody z SAM przedstawiono w rozdziale Porównanie zaproponowanej metody z Segment 

Anything Model na stronie 118. 

W przypadkach, gdy lotka jest w dużej odległości od linii algorytm SAM radzi sobie dość 

dobrze [Rysunek 44, Rysunek 45], jednakże takie sytuacje, gdy zawodnik prosi o weryfikację 

zdarzają się niezmiernie rzadko (Wtedy jest to taktyczna zagrywka zawodnika, aby zyskać czas 

i wybić przeciwnika z rytmu meczowego). 
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Rysunek 39 Lotka na tle białej linii i wynik segmentacji algorytmem GrabCut 

 

 

 

Rysunek 40 Segmentacja lotki przez algorytm Segment Anything 

Model poprzez precyzyjne wskazanie (błękitny punkt) 

segmentowanego obiektu 

 

Rysunek 41 Wynik segmentacji 

lotki przez algorytm SAM 



96 

 

Rysunek 42 Segmentacja lotki przez Segment Anything Model 

poprzez wskazanie obszaru w którym segmentować obiekt 

 

Rysunek 43 Wynik segmentacji 

lotki przez algorytm SAM 

 

Rysunek 44 Segmentacja lotki będącej daleko poza kortem przez 

algorytm SAM poprzez wskazanie obszaru w którym segmentować 

obiekt 

 

Rysunek 45 Wynik segmentacji 

lotki przez SAM 

 

Algorytm wyznaczania korka lotki i miejsca odbicia o podłoże 

Opracowany przez autora algorytm zakłada, że znana jest trajektoria lotki i przybliżona pozycja 

korka lotki oraz szerokość lotki w pikselach. Te dane dostarczane są przez algorytm śledzenia 

lotki opisany w rozdziale Detekcja i śledzenie lotki. 
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Jak już przedstawiono wcześniej, segmentacja rozmazanej białej lotki, która znajduje się na tle 

białej linii jest trudna, dlatego też autor zdecydował się na znalezienie ciemnego paska, który 

odcina biały korek od białych piór, a następnie wyliczenie okręgu odpowiadającemu korkowi. 

Przepisy nie wymagają, aby lotka posiadała taki pasek, ale na rynku nie ma lotek, które nie 

miałyby tego paska. Kolor tego paska jest zawsze ciemny – najczęściej czarny. Ten czarny 

pasek jest cienką taśmą, która jest konieczna ze względów produkcyjnych (poprawia trwałość 

lotki), pasek ten też ułatwia sędziom serwisowym ocenę czy podczas serwisu zawodnik uderzył 

lotkę w korek, czy w pióra (uderzenie w pióra podczas serwisu jest błędem [115]). 

Ponieważ ten pasek okala korek dookoła, to ruch wirowy lotki nie ma wpływu na rozmazanie 

jego dolnej i górnej krawędzi. Ruch postępujący lotki powoduje jego rozmazanie, ale w 

momencie odbicia lotka praktycznie zatrzymuje się i rozmycie nie jest duże. Dlatego też im 

więcej klatek na sekundę rejestruje kamera tym lepiej. Dane, dla których przeprowadzano 

eksperymenty zostały pozyskane z kamer pracujących z prędkościami od 150 do 200 klatek na 

sekundę. 

Na rysunku [Rysunek 46] przedstawiono wymiary lotki określone przepisami gry [115]. 

Przepisy dopuszczają pewną dowolność, ale z pomiarów przeprowadzone przez autora wynika, 

że wszystkie lotki turniejowe (Yonex, Victor) mają średnicę korka 26mm. 

W celu wyliczenia miejsca styku lotki z podłożem przejęto że: 

• kamera jest ustawiona na wprost linii prostopadle do podłoża, 

• średnica korka wynosi 26mm, 

• średnica lotki w najszerszym miejscu – końcówki piór wynosi 65 mm, 

• wysokość korka – 25 mm, 

• wysokość paska okalającego korek – 2 mm, 

• średnica obszaru styku korka lotki z podłożem – ½ średnicy korka – 13 mm. 
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Rysunek 46 Wymiary lotki określone przez przepisy17 

 

Wyznaczenie miejsca styku lotki z podłożem 

Miejsce styku lotki z podłożem zwizualizowano na rysunku [Rysunek 47]. Algorytm 

wyznaczający obszar styku lotki z podłożem opiera się prostych operacjach matematycznych i 

został opisany w punktach, poniżej. 

1. Algorytm na wejściu otrzymuje równanie prostej L, która jest wyznaczona przez traker 

na postawie trajektorii lotki oraz szerokość lotki w pikselach (sl). 

2. Niech punkt P oznacza punkt na prostej L, leżący na dalszej od korka krawędzi czarnego 

paska [Rysunek 46, Rysunek 47]. Algorytm wyznaczenia punktu P jest szczegółowo 

opisany w dalszej części - Wyznaczenie punktu P. 

3. Niech okrąg o oznacza okrąg wpisany w korek, a punkt O środek okręgu. Punkt O leży 

na prostej L w odległości r = 13mm (połowa średnicy korka) od punktu P. 

4. Niech linia S oznacza linię wyznaczającą podłoże kortu. Linia S jest prostopadła do 

prawej krawędzi obrazu. 

5. Wyznaczany jest trójkąt równoboczny o wierzchołkach (O, S1, S2), którego podstawa 

jest na linii S. 

 
17 Źródło: https://www.dimensions.com/element/badminton-shuttlecock 
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6. Na linii prostopadłej do linii S i przechodzącej przez punkt O wyznaczany jest punkt 

S0, który leży na wysokości trójkąta równobocznego na środku jego podstawy w 

odległości 
√3

2
 𝑟 od punktu O 

7. Mając punkty O, S0 wyznaczane są pozostałe współrzędne wierzchołków trójkąta 

równobocznego – S1 i S2. 

Punkty S1 i S2 wyznaczają odcinek, który reprezentuje obszar styku lotki z podłożem. W 

zależności od obserwowanej przez kamerę linii, położenie punktu S1 lub S2 determinuje czy 

lotka upadła w polu czy poza nim. Jeżeli kamera patrzy na linię tylną, będzie to punkt S2, jeśli 

na linię boczną prawą, będzie to punkt S1. 

 

Rysunek 47 Wizualizacja metody wyznaczania obszaru styku lotki z podłożem 
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W zależności od obserwowanej przez kamerę linii można wyznaczyć dwie reprezentatywne 

grupy upadku lotki: 

• Grupa 1 – lotka upada w pobliżu linii bocznej - [Rysunek 48] 

• Grupa 2 – lotka upada w pobliżu linii tylnej lub serwisowej – [Rysunek 49]. 

Jak widać, w zależności od grupy, rzut lotki na płaszczyznę obrazu nieznacznie się różni. 

Najbardziej jest to widoczne w przypadku uderzenia net kill [Rysunek 30]. 

  

Rysunek 48 Lotka upadająca w pobliżu linii bocznej Rysunek 49 Lotka upadająca w pobliżu linii końcowej 

 

Na rysunku [Rysunek 47] widoczna jest sytuacja, gdy kamera patrzy na linię końcową. Wtedy 

lotka jest prostopadła do kamery i nie ma skrótu perspektywicznego. W przypadku kamery 

patrzącej na linie boczne, sytuacja jest inna. Skrót perspektywiczny powoduje, że po 

wyznaczeniu punktu P powinniśmy wyznaczyć elipsę, a nie okrąg o, aby wyznaczyć punkty S1 

i S2. Autor celowo nie wyznacza elipsy tylko okrąg, gdyż ze względu na niewielki rozmiar 

korka od lotki oraz dużą odległość kamery od lotki w stosunku do jej rozmiaru, wyznaczona 

elipsa i tak byłaby zbliżona do okręgu. 
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Wyznaczając okrąg, a nie elipsę punkty wyznaczające obszar styku lotki z podłożem będą 

przesunięte w kierunku piór. [Rysunek 50] obrazuje sytuacje w której lotka po uderzeniu smecz 

po prostej upada w pobliżu linii. Prawidłowe punkty wyznaczające obszar styku to S1 i S2. 

Opisana metoda wyznaczy punkty Q1 i Q2. Należy jednak zwrócić uwagę, że dla oceny czy 

było pole czy aut istotna jest odległość punktu Q1 od linii - na rysunku oznaczona jako d2 (dla 

prawidłowo wyznaczonego punktu S1 odległość od linii to d1). W związku z tym, że kamera 

jest ustawiona tak, iż patrzy na boczną linie na wprost, to odległości d1 i d2 są praktycznie takie 

same. Autor postanowił zaakceptować ten błąd, ponieważ w porównaniu z wielkością błędu 

jaki może powodować niedokładne wyznaczenie punktu P błąd spowodowany opisanym 

uproszczeniem jest na tyle mały, iż obiektywnie akceptowalny. Najważniejsze jest jak 

najdokładniejsze wyznaczenie punktu P.  

 

Rysunek 50 Wyznaczenie obszaru styku lotki z podłożem dla kamery patrzącej na linie boczną 

 

Wyznaczenie punktu P 

W metodzie zaproponowanej przez autora, do wyznaczenia punktu P, wymagana jest 

znajomości trajektorii lotki oraz szerokość lotki w pikselach (jest ona różna w zależności od 

odległości lotki od kamery). Przyjęto, że trajektoria lotki przy podłożu jest linią prostą. Linia, 

która wyznacza trajektorię oraz szerokość lotki w pikselach (cecha width [Tabela 3]) wyliczana 

jest przez moduł śledzący korek lotki opisany w rozdziale Opis metody zastosowanej do 

detekcji lotki. Trajektoria lotki może zmienić się w momencie odbicia, dlatego też do 

wyznaczenia linii L przyjmowana jest trajektoria, którą lotka miała, przed odbiciem. Do 
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wyznaczenia linii L wykorzystywane są wszystkie punkty trajektorii przed odbiciem zwracane 

przez traker. Aby dopasować linię do punktów trajektorii autor zastosował metodę RANSAC18 

[114].  

Błędne wyznaczenie momentu odbicia ma wpływ na wyznaczenie prostej L, a co za tym idzie 

i wyznaczenie punktu P. Zastosowany RANSAC w pewien sposób koryguje wpływ błędnego 

wyznaczenia momentu odbicia na dopasowanie punktów trajektorii do prostej, ale w 

momencie, gdy nie mamy wielu punktów trajektorii i oprócz punktów przed odbiciem 

weźmiemy też punkty po odbiciu to nasza linia L będzie wyznaczona niedokładnie. Największy 

problem występuje wtedy, gdy algorytm znajdujący klatkę, w której nastąpiło odbicie o podłoże 

pomyli się i znajdzie nie pierwsze, a drugie odbicie. 

Punkt P wyznaczany jest jako współrzędne piksela obrazu odpowiadającemu miejscu, gdzie 

rozpoczyna się czarny pasek oddzielający pióra od korka lotki. Na linii L wyznaczany jest 

odcinek M, a następnie w celu wyznaczenia punktu P sprawdzany jest każdy piksel leżący na 

odcinku M. Odcinek M ograniczony jest przez punkty k1 i k2, które znajdują się w odległości 

sl każdy od punktu k0 (wyznaczona przez traker pozycja korka), a sl jest szerokością lotki - 

[Rysunek 47]. 

Dla każdego piksela leżącego na odcinku M wyznaczany jest wektor cech opisany w tabeli 

[Tabela 17], który przekazywany jest jako wejście do wytrenowanego modelu uczenia 

maszynowego. Model zwraca prawdopodobieństwo, z jakim wektor wejściowy opisuje piksel 

będący miejscem rozpoczęcia czarnego paska. 

Wyznaczenie wektora cech 

W poniższej tabeli przedstawiono sposób wyznaczenia cech dla pojedynczego piksela leżącego 

na odcinku M. Przeliczenie pikseli na milimetry jest dokonywane zgodnie ze wzorem: 

𝐷𝑚𝑚 =
𝐷𝑝𝑥 ∗ 65.0

𝑠ℎ𝑢𝑡𝑡𝑙𝑒_𝑤𝑖𝑑𝑡ℎ
  (1) 

gdzie: 

𝐷𝑝𝑥 – Przeliczana wartość w pikselach (np. dystans do linii) 

65.0 – Stała będąca szerokością lotki w milimetrach określona przepisami 

 
18 Skrócony opis algorytmu RANSAC znajduje się w Słowniczek pojęć, punkt 13 na stronie 96 
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𝑠ℎ𝑢𝑡𝑡𝑙𝑒_𝑤𝑖𝑑𝑡ℎ – Szerokość lotki w pikselach wyznaczona przez traker dla 

analizowanej ramki (cecha width [Tabela 3]). 

Nazwa Opis 

gradient 
 

Wielkość gradientu policzona jako 

𝐺(𝑛) = 𝐼𝐿(𝑀𝑥𝑦(𝑛 + 1)) − 𝐼𝐿(𝑀𝑥𝑦(𝑛 − 1)) 

    gdzie: 

    𝑀𝑥𝑦 – uporządkowany zbiór współrzędnych obrazu (x,y) 

wyznaczonych na odcinku M ułożony w kolejności zgodnie z kierunkiem 

poruszania się lotki 

    n – indeks punktu na w zbiorze 𝑀𝑥𝑦 

    IL – intensywność jasności piksela na analizowany obrazie w punkcie 

(x,y) w zakresie [0,255] 

gradient_0 
 

Wielkość gradientu policzona jako 

𝐺0(𝑛) = 𝐼𝐿(𝑀𝑥𝑦(𝑛)) − 𝐼𝐿(𝑀𝑥𝑦(𝑛 − 1)) 

    gdzie: 

    𝑀𝑥𝑦 – uporządkowany zbiór współrzędnych obrazu (x,y) 

wyznaczonych na odcinku M ułożony w kolejności zgodnie z kierunkiem 

poruszania się lotki 

    n – indeks punktu na w zbiorze 𝑀𝑥𝑦 

    IL – intensywność jasności piksela na analizowany obrazie w punkcie 

(x,y) w zakresie [0,255] 

gradient_norm 
 

Wielkość gradientu 𝐺𝑛𝑜𝑟𝑚 wyznaczona jak w przypadku gradient (G) z tą 

różnicą, że dla każdego analizowanego obrazu jasność piksela IL została 

znormalizowana do [0,1] - 𝐼𝐿𝑛𝑜𝑟𝑚. Normalizacja min-max 

przeprowadzona dla pikseli ze zbioru 𝑀𝑥𝑦 

𝐺𝑛𝑜𝑟𝑚(𝑛) = 𝐼𝐿𝑛𝑜𝑟𝑚(𝑀𝑥𝑦(𝑛 + 1)) − 𝐼𝐿𝑛𝑜𝑟𝑚(𝑀𝑥𝑦(𝑛 − 1)) 

 

gradient_0_norm 
 

Wielkość gradientu 𝐺0 𝑛𝑜𝑟𝑚wyznaczona jak w przypadku gradient_0 (𝐺0) 

z tą różnicą, że jasność piksela IL została znormalizowana do [0,1] 

𝐺0 𝑛𝑜𝑟𝑚(𝑛) = 𝐼𝐿𝑛𝑜𝑟𝑚(𝑀𝑥𝑦(𝑛)) − 𝐼𝐿𝑛𝑜𝑟𝑚(𝑀𝑥𝑦(𝑛 − 1)) 
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next_local_max_value 
 

Wartość w lokalnym maksimum znajdującym się w zbiorze 𝑀𝑥𝑦 za 

analizowanym punktem obliczona jako:  

𝐿𝑀𝑎𝑥(𝑛) = 𝑎𝑏𝑠(𝐺(𝑚 + 1)) + 𝑎𝑏𝑠(𝐺(𝑚 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

         m – indeks punktu, w którym jest lokalne maksimum 

         m > n 

 

Lokalne minima i maksima wyznaczane są na podstawie gradientu G – 

znajdują się w tych punktach, gdzie gradient zmienia znak. 

next_local_max_norm_
value 
 

Wartość w lokalnym maksimum znajdującym się w zbiorze 𝑀𝑥𝑦 za 

analizowanym punktem obliczona jako:  

𝐿𝑀𝑎𝑥(𝑛) = 𝑎𝑏𝑠(𝐺𝑛𝑜𝑟𝑚(𝑚 + 1)) + 𝑎𝑏𝑠(𝐺𝑛𝑜𝑟𝑚(𝑚 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

         m – indeks punktu, w którym jest lokalne maksimum 

         m > n 

prev_local_min_value 
 

Wartość w lokalnym minimum znajdującym się w zbiorze 𝑀𝑥𝑦 przed 

analizowanym punktem obliczona jako:  

𝐿𝑀𝑖𝑛(𝑛) = 𝑎𝑏𝑠(𝐺(𝑚 + 1)) + 𝑎𝑏𝑠(𝐺(𝑚 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

         m – indeks punktu, w którym jest lokalne minimum 

         m < n 

prev_local_min_norm_v
alue 
 

Wartość w lokalnym minimum znajdującym się w zbiorze 𝑀𝑥𝑦 przed 

analizowanym punktem obliczona jako:  

𝐿𝑀𝑖𝑛(𝑛) = 𝑎𝑏𝑠(𝐺𝑛𝑜𝑟𝑚(𝑚 + 1)) + 𝑎𝑏𝑠(𝐺𝑛𝑜𝑟𝑚(𝑚 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

         m – indeks punktu, w którym jest lokalne minimum 

         m < n 

next_local_max_lumino
sity 
 

Wartość znormalizowanej intensywności jasności piksela 𝐼𝐿𝑛𝑜𝑟𝑚 w 

pierwszym lokalnym maksimum znajdującym się w zbiorze 𝑀𝑥𝑦 za 

analizowanym punktem. 
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prev_local_min_lumino
sity 
 

Wartość znormalizowanej intensywności jasności piksela w pierwszym 

lokalnym minimum znajdującym się w zbiorze 𝑀𝑥𝑦 przed analizowanym 

punktem. 

dist_to_next_max 
 

Dystans w pikselach pomiędzy analizowanym punktem, a punktem 

reprezentującym lokalne maksimum znajdującym się w zbiorze 𝑀𝑥𝑦 za 

analizowanym punktem 

dist_to_next_max_mm 
 

Dystans w milimetrach pomiędzy analizowanym punktem, a punktem 

reprezentującym lokalne maksimum znajdującym się w zbiorze 𝑀𝑥𝑦 za 

analizowanym punktem 

dist_to_prev_min 
 

Dystans w pikselach pomiędzy analizowanym punktem, a punktem 

reprezentującym lokalne minimum znajdującym się w zbiorze 𝑀𝑥𝑦 przed 

analizowanym punktem 

dist_to_prev_min_mm 
 

Dystans w milimetrach pomiędzy analizowanym punktem, a punktem 

reprezentującym lokalne minimum znajdującym się w zbiorze 𝑀𝑥𝑦 przed 

analizowanym punktem 

local_min 
 

Jeśli analizowany punkt znajduje się w lokalnym minimum to wartość ta 

jest obliczona jako: 

𝐿𝑀𝑖𝑛(𝑛) = 𝑎𝑏𝑠(𝐺(𝑛 + 1)) + 𝑎𝑏𝑠(𝐺(𝑛 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

 

W przeciwnym razie zero  

local_min_0 
 

Jeśli analizowany punkt znajduje się w lokalnym minimum to wartość ta 

jest obliczona jako: 

𝐿𝑀𝑖𝑛(𝑛) = 𝑎𝑏𝑠(𝐺0(𝑛 + 1)) + 𝑎𝑏𝑠(𝐺0(𝑛 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

 

W przeciwnym razie zero 
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local_min_norm 
 

Jeśli analizowany punkt znajduje się w lokalnym minimum to wartość ta 

jest obliczona jako: 

𝐿𝑀𝑖𝑛(𝑛) = 𝑎𝑏𝑠(𝐺𝑛𝑜𝑟𝑚(𝑛 + 1)) + 𝑎𝑏𝑠(𝐺𝑛𝑜𝑟𝑚(𝑛 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

 

W przeciwnym razie zero  

local_min_0_norm 
 

Jeśli analizowany punkt znajduje się w lokalnym minimum to wartość ta 

jest obliczona jako: 

𝐿𝑀𝑖𝑛(𝑛) = 𝑎𝑏𝑠(𝐺0 𝑛𝑜𝑟𝑚(𝑛 + 1)) + 𝑎𝑏𝑠(𝐺0 𝑛𝑜𝑟𝑚(𝑛 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

 

W przeciwnym razie zero 

local_max 
 

Jeśli analizowany punkt znajduje się w lokalnym maksimum to wartość ta 

jest obliczona jako: 

𝐿𝑀𝑎𝑥(𝑛) = 𝑎𝑏𝑠(𝐺(𝑛 + 1)) + 𝑎𝑏𝑠(𝐺(𝑛 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

 

W przeciwnym razie zero  

local_max_0 
 

Jeśli analizowany punkt znajduje się w lokalnym maksimum to wartość ta 

jest obliczona jako: 

𝐿𝑀𝑎𝑥(𝑛) = 𝑎𝑏𝑠(𝐺0(𝑛 + 1)) + 𝑎𝑏𝑠(𝐺0(𝑛 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

 

W przeciwnym razie zero 
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local_max_norm 
 

Jeśli analizowany punkt znajduje się w lokalnym maksimum to wartość ta 

jest obliczona jako: 

𝐿𝑀𝑎𝑥(𝑛) = 𝑎𝑏𝑠(𝐺𝑛𝑜𝑟𝑚(𝑛 + 1)) + 𝑎𝑏𝑠(𝐺𝑛𝑜𝑟𝑚(𝑛 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

 

W przeciwnym razie zero  

local_max_0_norm 
 

Jeśli analizowany punkt znajduje się w lokalnym maksimum to wartość ta 

jest obliczona jako: 

𝐿𝑀𝑎𝑥(𝑛) = 𝑎𝑏𝑠(𝐺0 𝑛𝑜𝑟𝑚(𝑛 + 1)) + 𝑎𝑏𝑠(𝐺0 𝑛𝑜𝑟𝑚(𝑛 − 1)) 

gdzie: 

         n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦  

 

W przeciwnym razie zero 

p_avg Średnia jasność pikseli w zbiorze 𝑀𝑥𝑦 

p_stdev Odchylenie standardowe jasności pikseli w zbiorze 𝑀𝑥𝑦 

p_max Maksymalna jasność pikseli w zbiorze 𝑀𝑥𝑦 

p_min Minimalna jasność pikseli w zbiorze 𝑀𝑥𝑦 

luminosity 
 

Jasność piksela w analizowanym punkcie 

𝐼(𝑛) = 𝐼𝐿(𝑀𝑥𝑦(𝑛)) 

    gdzie: 

    𝑀𝑥𝑦 – zbiór współrzędnych obrazu (x,y) wyznaczonych na odcinku M 

ułożony w kolejności zgodnie z kierunkiem poruszania się lotki 

    n – indeks punktu na w zbiorze 𝑀𝑥𝑦 

    IL – intensywność jasności piksela na analizowany obrazie w punkcie 

(x,y) w zakresie [0,255] 

luminosity_norm 
 

Znormalizowana jasność piksela w analizowanym punkcie 

𝐼𝑛𝑜𝑟𝑚(𝑛) = 𝐼𝐿𝑛𝑜𝑟𝑚(𝑀𝑥𝑦(𝑛)) 

    gdzie: 

    𝑀𝑥𝑦 – zbiór współrzędnych obrazu (x,y) wyznaczonych na odcinku M 

ułożony w kolejności zgodnie z kierunkiem poruszania się lotki 

    n – indeks punktu na w zbiorze 𝑀𝑥𝑦 

    𝐼𝐿𝑛𝑜𝑟𝑚 – intensywność jasności piksela na analizowany obrazie w 

punkcie (x,y) w zakresie [0,1] 
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abs_diff_sum_norm 
 

Aby obliczyć tę cechę w pierwszej kolejności wyznaczana jest średnia 

wartość jasności z 10% najjaśniejszych (bright_avg) i 5% najciemniejszych 

(dark_avg) pikseli ze zbioru 𝑀𝑥𝑦. 

Następnie wyznaczany jest model jasności pikseli w okolicy punktu P. 

Model przedstawiono na rysunku [Rysunek 51].  

Jest to kernel w kształcie krzyża o środku w punkcie S. Piksele znajdujące 

się na poziomym ramieniu mają jasność dark_avg a na pionowym – 

bright_avg.  

Następnie dla każdego punktu ze zbioru  𝑀𝑥𝑦 obliczamy błąd 

dopasowania do modelu. Jest to zsumowana absolutna różnica jasności 

pomiędzy pikselami kernela, a pikselami obrazu podzielona przez liczbę 

punktów kernela. Opisuje to wzór: 

𝐷𝑖𝑓𝑓 =  

∑ (𝑎𝑏𝑠 ( 𝐾(𝑘) −  𝐼𝐿 (𝐶𝑥𝑦(𝑘)))) 𝑙
𝑘=0

𝑙
 

    gdzie: 

       K – Kernel  

       k – k-ty piksel kernela 

       l – Liczba pikseli w kernelu 

       Cxy – Współrzędne punktu analizowanego obrazu dla k-tego punktu 

kernela 

       IL – Jasność piksela w punkcie Cxy 

 

Rysunek 51 Sposób wyznaczenia kernela 
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is_min_abs_diff 
 

Wartość 1 dla tych elementów ze zbioru 𝑀𝑥𝑦, dla których cecha 

abs_diff_norm ma najniższą wartość. 

abs_diff_sum_norm_arr
_min 
 

Minimalna wartość cechy abs_diff_norm dla analizowanej ramki . 

abs_diff_sum_norm_arr
_max 
 

Maksymalna wartość cechy abs_diff_norm dla analizowanej ramki. 

abs_diff_sum_norm_arr
_mean 
 

Średnia wartość cechy abs_diff_norm dla analizowanej ramki. 

abs_diff_sum_norm_arr
_std 
 

Odchylenie standardowe cechy abs_diff_norm dla analizowanej ramki. 

dist_to_tip_point_norm 
 

Dystans w milimetrach od analizowanego punktu ze zbioru 𝑀𝑥𝑦 do korka 

wyznaczonego przez traker. 

shuttle_width 
Szerokość lotki w pikselach wyznaczona przez traker (cecha width [Tabela 

3]). 

next_n_avg_luminosity 
 

Średnia jasność następnych k pikseli. Gdzie k oznacza liczbę pikseli 

zawartych w szerokości czarnego paska (obliczona jako 1/13 szerokości 

lotki w pikselach zwróconej przez traker) 

𝐼𝑎𝑣𝑔(𝑛) =
∑ 𝐼(𝑖)𝑖=𝑘

𝑖=0

𝑘
 

gdzie: 

       n – indeks analizowanego punktu w zbiorze 𝑀𝑥𝑦 

       k – k = (int)shuttle_width/13 

   k > n 

 

dist_to_black_stripe_en
d 
 

Jak odległe w pikselach jest następne lokalne maksimum od 

przewidywanego końca czarnego paska (wyliczonego na podstawie 

szerokości paska). 

Wartość zero oznacza, że następne lokalne maksimum powinno być 

właśnie w odległości szerokości paska. 

dist_to_black_stripe_en
d_mm 

Jak wyżej, tylko w milimetrach 

Tabela 17 Sposób wyznaczenia wektora cech 

Spośród wyznaczonych cech odrzucono te które są silnie ze sobą skorelowane i nie poprawiają 

predykcji modelu. Ostatecznie wybrano 18 cech przedstawionych poniżej: 
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1. next_local_max_norm_value 
2. prev_local_min_norm_value 
3. next_local_max_luminosity 
4. prev_local_min_luminosity 
5. dist_to_next_max_mm 
6. dist_to_prev_min_mm 
7. gradient_norm 
8. gradient_norm_0 
9. local_min_norm 
10. local_max_norm 
11. local_min_0_norm 
12. local_max_0_norm 
13. luminosity_norm 
14. abs_diff_sum_norm 
15. is_min_abs_diff 
16. dist_to_tip_point_norm 
17. dist_to_black_stripe_end_mm 
18. next_n_avg_luminosity_norm 

 

Współczynniki korelacji liniowej Pearsona dla wybranych cech zaprezentowano na rysunku 

[Rysunek 52] 

 

Rysunek 52 Współczynniki korelacji liniowej Pearsona dla wybranych cech 
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Autor zbadał również, które cechy są mają największy wpływ na predykcje modelu. Cechy 

wraz z wartościami SHAP19 (SHapley Additive exPlanations) [115] zaprezentowano na 

rysunku [Rysunek 53]. Cechy są ułożone w kolejności od najistotniejszej do tej mającej 

najmniejszy wpływ na predykcję. 

  

Rysunek 53 Wartości SHAP values dla cech modelu 

 

Trening modelu, wyniki i dyskusja 

Zbiór filmów, na których zarejestrowano odbicie o ziemię został podzielony na zbiór 

treningowy, walidacyjny i testowy zgodnie z procedurą opisaną w rozdziale 3.1 Gromadzenie 

danych do eksperymentów. Z każdego filmu wybrano ramkę, w której nastąpiło odbicie o 

ziemię. Dla tej ramki, dla każdego piksela znajdującego się na odcinku M wyznaczono wektor 

cech opisany powyżej. Autor na każdym takim obrazie zaznaczył na odcinku M piksel P, który 

jest w miejscu rozpoczęcia się czarnego paska – [Rysunek 54]. 

 
19 Skrócony opis techniki SHAP znajduje się w Słowniczek pojęć, punkt 14 na stronie 96 
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Rysunek 54 Anotacja. Zaznaczenie na linii obrazującej trajektorię lotki – L (kolor zielony), piksela gdzie zaczyna się czarny 

pasek (kolor czerwony) 

Podobnie jak w przypadku trenowania modelu mówiącego o tym, czy w danej ramce nastąpiło 

odbicie o ziemię, autor przetestował kilka modeli i wybrał ten dający najlepsze rezultaty. 

Przetestowane modele i wyniki przedstawiono w tabeli [Tabela 18]. Zbiór danych jest silnie 

niezbalansowany – negatywnych (inny piksel niż P) obserwacji jest 98.76% a pozytywnych 

(piksel P) 1.24%, dlatego do oceny, który model jest najlepszy autor wybrał metrykę ballanced 

accuracy. 

Model Macierz pomyłek Wyniki 

Balanced 

Baggigng 

Classifier 

 

              precision    recall  f1-score  

 

       False       1.00      0.93      0.96  

        True       0.15      0.96      0.26  

 

    accuracy                           0.93  

   macro avg       0.58      0.95      0.61  

weighted avg       0.99      0.93      0.96 

 

balanced accuracy                      0.95 
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Balanced 

Random 

Forest 

Classifier 

 

              precision    recall  f1-score 

 

       False       1.00      0.89      0.94 

        True       0.10      0.96      0.19 

 

    accuracy                           0.89 

   macro avg       0.55      0.93      0.56 

weighted avg       0.99      0.89      0.93 

 

balanced accuracy                      0.93 

Logistic 

regression 

 

             precision    recall  f1-score  

 

       False       1.00      0.85      0.92 

        True       0.07      0.88      0.13 

 

    accuracy                           0.85 

   macro avg       0.53      0.86      0.52 

weighted avg       0.99      0.85      0.91 

 

balanced accuracy                      0.86 

Tabela 18 Przetestowane modele i ich skuteczność 
macro avg – średnia arytmetyczna podanych miar dla obu klas 

weighted avg – średnia ważona miar 
 

Autor zoptymalizował również hyperparametry dla przedstawionych modeli (implementacja z 

biblioteki scikit-learn). W tabeli [Tabela 19] przedstawiono wartości tychże parametrów dla 

każdego z modeli: 

Model Hyperparametry 

BalancedBaggingClassifier 

estimator=HistGradientBoostingClassifier(
 class_weight='balanced', 
 learning_rate=0.08158911576437505, 
 max_iter=381, 
 min_samples_leaf=13), 
n_estimators=194, 
sampling_strategy="not minority" 

BalancedRandomForestClassifier 

n_estimators = 114,  
criterion = 'gini',  
max_depth = 14, 
max_features = 'log2',  
min_samples_leaf = 2, 
sampling_strategy = 'majority', 
bootstrap = False,  
oob_score = False,  
replacement = False 
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LogisticRegression 

class_weight='balanced', 
solver='saga',  
penalty = 'elasticnet',  
tol = 5.343043561755692e-05, 
C = 0.813014219912614,  
fit_intercept = True,  
intercept_scaling = 0.5433414328659414, 
max_iter = 1160,  
warm_start = False,  
l1_ratio = 0.9040450235295895 

Tabela 19 Hyperparametry testowanch modeli 

Z punktu widzenia sędziego najistotniejsza jest odpowiedź na pytanie czy opracowane 

rozwiązanie poprawnie oceniło to czy lotka odbiła się w korcie, czy poza nim. Mniej istotne 

jest to, czy system myli się o 5 czy 10 milimetrów. Aby odpowiedzieć na to pytanie autor 

wykonał dalsze eksperymenty. 

Ze zbioru walidacyjnego, dla każdego nagrania z osobna wybrano ramkę, w której nastąpiło 

odbicie lotki o podłoże. Dla tej ramki autor użył wytrenowanego modelu i dla każdego piksela 

na linii M wyliczył prawdopodobieństwo, że analizowany piksel jest szukanym pikselem P 

(wyznaczającym rozpoczęcie się czarnego paska okalającego korek lotki). Dla piksela o 

najwyższym prawdopodobieństwie wyznaczono miejsce odbicia lotki o podłoże zgodnie z 

metodą opisaną w rozdziale Algorytm wyznaczania korka lotki i miejsca odbicia o podłoże, a 

następnie obliczono odległość przewidywanego miejsca upadku od zaznaczonego przez 

operatora prawdziwego miejsca upadku - d, a także odległość prawdziwego miejsca upadku od 

linii – dt i odległość przewidywanego miejsca upadku lotki od linii – dp. Odległości te 

zobrazowano na rysunku [Rysunek 55] – w przypadku idealnej predykcji wartości d oraz błąd 

err=abs(dp-dt) wynoszą zero. Odległość dp jest liczona jako dystans od linii do jednego z 

punktów S1 lub S2, w zależności od tego, który jest bliższy linii kortu [Rysunek 47, Rysunek 

50]. Zweryfikowano też, czy przewidywane przez model miejsce upadku jest po tej samej 

stronie linii co prawdziwe miejsce upadku (czyli czy decyzja systemu IN/OUT zgadza się z 

prawdą). Błąd w pikselach wyznaczenia odległości przewidywanego miejsca upadku lotki w 

stosunku do prawdziwego przeliczono na milimetry zgodnie ze wzorem (1) ze strony 102. 

Miejsce upadku lotki (ground-truth) zostało zaznaczone przez autora na każdej wspomnianej 

ramce, a następnie zweryfikowane przez kwalifikowanego sędziego. 
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Rysunek 55 Miejsce upadku lotki wyznaczone przez algorytm (kolor purpurowy) i ground-truth (kolor żółty) 

W tabeli [Tabela 20] przedstawiono wyniki dla 3 testowanych modeli. Różnica w błędzie 

pomiędzy przewidywanym miejscem upadku, a błędem w wyznaczeniu odległości od linii do 

miejsca upadku lotki wynika z tego, że gdy model wyznaczył miejsce upadku dokładnie 

przesunięte wzdłuż linii, to błąd odległości od linii jest niezmienny. Takie sytuacje zdarzają się 

dla kamer obserwujących linie boczne. 

Model 

Średni błąd 
wyznaczenia odległości 
miejsca upadku od linii 
– avg(abs(dp – dt)) 

Średnia euklidesowa 
odległość przewidywanego 
od prawdziwego miejsca 
upadku lotki - d 

Zła 
decyzja 
IN/OUT 

BalancedBaggingClassifier 6.91 mm 9.41 mm 2.08% 

BalancedRandomForestClassifier 7.54 mm 10.98 mm 6.25% 

LogisticRegression 9.20 mm 13.56 mm 6.25% 

Tabela 20 Skuteczność decyzji IN/OUT dla analizowanych modeli 

Jak widać proponowane rozwiązanie jest skuteczne w 98%. Podczas mistrzostw świata 

seniorów – Katowice 2019, autor zweryfikował skuteczność decyzji sędziów liniowych. Na 

211 przypadków, w których zawodnik nie zgadzał się z decyzją sędziego liniowego i poprosił 

o wideo weryfikacje, w 51 przypadkach sędzia się mylił [Tabela 21]. Wynika z tego, że 

sędziowie liniowi mylą się w 24.2% przypadków. Primo L. i inni [115] zebrali podobne statystyki 

podczas olimpiady w Rio de Janeiro, 2016 oraz mistrzostw świata w Glasgow, 2017 - sędziowie 

pomylili się w 11 z 56 przypadków (19.6%). Różnica pomiędzy statystykami zebranymi przez 

autora, a tymi podanymi w [115] może wynikać z tego, że podczas zawodów w Rio de Janeiro 

i Glasgow sędziowie byli bardziej doświadczeni oraz tego, że ci badacze zebrali mniej danych 

od autora. 
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Decyzja Liczba próśb o weryfikację 

Sędzia podjął poprawną decyzję 160 
Błędna decyzja sędziego 51 
Razem 211 

Która linia była sprawdzana Jak często 

Linia boczna 109 
Linia tylna 75 
Tylna linia serwisowa w deblu 20 
Linia serwisowa środkowa 7 

Tabela 21 Statystyka weryfikacji decyzji sędziów liniowych 

Autor dodatkowo sprawdził jeszcze to, jak działa jego rozwiązanie w szczególnie trudnych dla 

sędziego liniowego przypadkach. Jeżeli lotka upada 20 cm od linii, a zawodnik prosi o wideo 

weryfikacje, tylko w celach taktycznych, to pomyłka sędziego jest mało prawdopodobna, a 

takie sytuacje podczas zawodów się zdarzają. Dlatego też autor ze zbioru danych wybrał te 

nagrania, w których lotka upada w odległości od linii mniejszej niż jej szerokość - 4 cm i dla 

nich zweryfikował skuteczność proponowanego rozwiązania – [Tabela 22]. 

Model 

Średni błąd 
wyznaczenia 

odległości miejsca 
upadku od linii 

Średnia odległość od 
przewidywanego do 

zaznaczonego 
miejsca upadku 

Zła 
decyzja 
IN/OUT 

BalancedBaggingClassifier 6.97 mm 10.55 mm 4.84 % 

Tabela 22 Skuteczność decyzji IN/OUT dla sytuacji, gdy lotka upada w pobliżu linii 

Autor przeanalizował przypadki błędnej decyzji systemu i w tabeli [Tabela 23] zaprezentował 

wybrane sytuacje oraz wskazał przyczyny pomyłek. Kolorem żółtym zaznaczone zostało 

miejsce upadku wskazane przez sędziego, kolorem purpurowym miejsce upadku wyznaczone 

przez algorytm. 
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Lotka znajduje się daleko od kamery oraz jest mocno rozmazana, przez co czarny pasek jest słabo 

widoczny. Algorytm źle wyznaczył punkt P – cień rzucony przez lotkę został pomylony z czarnym 

paskiem. Z tego powodu miejsce upadku jest przesunięte i znajduje się na zewnątrz pola gry.  

 

Niewielkie przesunięcie wynikające ze złego wyznaczenia linii L 
przez traker. 
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Niewielkie przesunięcie wynikające ze złego wyznaczenia linii L 
przez traker, które nie skutkuje błędną decyzją IN/OUT. 

 

W tym przypadku wydaje się, że sędzia błędnie zaznaczył miejsce upadku. Zdaniem autora lotka 
upadła poza polem gry i decyzja systemu - OUT jest poprawna 

Tabela 23 Przykłady błędnych decyzji IN/OUT systemu. Kolorem żółtym zaznaczono miejsce upadku wyznaczone przez 

sędziego, a kolorem purpurowym wyznaczone przez system 

 

Porównanie zaproponowanej metody z Segment Anything Model 

W celu porównania wyników przedstawionych w tabeli [Tabela 22] z wynikami uzyskanymi 

za pomocą uznawanej za state of the art metody SAM, autor wykonał następujący eksperyment. 

Dla każdego obrazka w zbiorze danych zawierającego te nagrania, w których lotka upada w 

odległości mniejszej niż 4 cm od linii, wyznaczono obszar zainteresowań, który został 

przekazany do SAM w celu wyznaczenia masek segmentacji. 
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Obszar zainteresowań został wyznaczony jako kwadrat o środku w punkcie będącym pozycją 

korka lotki wskazanej przez traker i o boku równym n-krotności szerokości lotki zwróconej 

przez traker. Za n przyjmowano różne liczby i weryfikowano otrzymane rezultaty.  

W wyznaczony obszarze dokonano segmentacji z wykorzystaniem algorytmu SAM. Algorytm 

SAM umożliwia generowanie trzech masek na podstawie monitu użytkownika (np. w danym 

obszarze zainteresowań lub we wskazanym punkcie). Na zdjęciach [Rysunek 56] 

przedstawiono trzy przykładowe maski (oznaczone kolorem niebieskim) wygenerowane przez 

SAM dla tego samego obrazu wejściowego. Wybór najlepszej maski został dokonany zgodnie 

z procedurą opisaną poniżej. 

W pierwszym kroku usunięto tzw. wyspy – czyli te obszary danej maski, które nie są połączone 

z głównym (o największej powierzchni) obszarem oraz dziury. Maska przedstawiona na zdjęciu 

[Rysunek 56 a)] składa się z dwóch obszarów, a po usunięciu wysp i dziur jest przedstawiona 

na rysunku [Rysunek 57]. 

Dla każdej z masek obliczono współczynnik Jaccarda (również nazywany w literaturze 

anglojęzycznej jako Intersection over union - IoU zgodnie ze wzorem podanym w rozdziale 6 

punkt 4). Jako predykcję przyjęto wygenerowaną maskę, a jako ground-truth obraz różnicowy. 

Dla obrazowanego przykładu zaprezentowany na rysunku [Rysunek 58 b)]. Ta optymalizacja 

ma na celu odrzucenie tych masek, które oprócz lotki obejmują również linie kortu.  

Wśród wszystkich masek zwróconych przez SAM wybrano tę o najwyższej wartości IoU. 

Wartości IoU dla analizowanego przykładu wynoszą odpowiednio: 

maska a) 0,111; b) 0,106;  c) 0,108. 

Maska a) ma najwyższą wartość IoU i dlatego została wybrana jako ta najlepsza. 

Opisana procedura ma na celu zoptymalizowanie wyników jakie można uzyskać wykorzystując 

SAM. 

Kolejnym krokiem było wyznaczenie obszaru styku korka lotki z podłożem. Ze względu na 

ustawienie kamer w stosunku do podłoża i linii, można przyjąć, że piksel maski o największej 

wartości współrzędnej y (zgodnie z układem współrzędnych zorientowanym tak jak na 

[Rysunek 59]) odpowiada punktowi S0 z rysunku [Rysunek 47]. Na marginesie, warto 

zauważyć, że gdyby wybrano maskę c) to punkt S0 byłby znacznie przesunięty w dół. 

Następnie, w sposób opisany w rozdziale Wyznaczenie miejsca styku lotki z podłożem na stronie 
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98, wyznaczono punkty S1 i S2, które wyznaczają linie styku lotki z podłożem – na zdjęciu 

[Rysunek 58] oznaczoną kolorem purpurowym. 

a)  b)  c)  

Rysunek 56 Przykładowe 3 maski (niebieski kolor) wygenerowane przez SAM dla wskazanego przez użytkownika obszaru 

zainteresowań (zielony kwadrat) 

a)  b)  

Rysunek 57 Maska segmentacji przed a) i po b) usunięciu wysp i dziur dla maski z rysunku Rysunek 56 a) 

a)   b)  

Rysunek 58 Zbliżenie na upadającą lotkę a) oraz obraz różnicowy b) utworzony z dwóch sąsiadujących klatek zapisu wideo 
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Rysunek 59 Wyznaczone miejsce odbicia lotki o podłoże (kolor purpurowy) 

Na koniec wykonano jeszcze jeden eksperyment i wyznaczono prostokątny obszar 

zainteresowań w taki sposób, że dalszy (wg współrzędnej y) bok prostokąta jest oddalony o 

0.25 szerokości lotki od współrzędnej y korka lotki zwróconej przez traker. Celem takiego 

ustawienia obszaru zainteresowań jest objęcie jak najmniejszego obszaru leżącego poza 

obszarem wyznaczonym przez lotkę. Ma to jednak taką wadę, że obszar zainteresowań może 

nie objąć korka lotki - [Rysunek 60]. Wyniki przedstawionego eksperymentu z uwzględnieniem 

wpływu wielkości obszaru zainteresowań na segmentację oraz porównanie z proponowaną 

metodą przedstawiono w tabeli [Tabela 24]. 

 

Rysunek 60 Zmniejszenie obszaru zainteresowań do prostokąta 
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Model 
Średni błąd 
wyznaczenia odległości 
miejsca upadku od linii 

Średnia odległość od 
przewidywanego do 
zaznaczonego miejsca upadku  

Zła 
decyzja 
IN/OUT 

Proponowana metoda 6.97 mm 10.55 mm 4.84 % 

SAM n=2.0 9.49 mm 18.26 mm 16.23 % 

SAM n=2.5 9.91 mm 19.27 mm 12.90 % 

SAM n=3.0 9.23 mm 17.01 mm 12.90 % 

SAM n=3.5 10.15 mm 18.89 mm 12.90 % 

SAM n=4.0 14.21 mm 25.58 mm 19.36 % 

SAM (obszar 
prostokątny) 

8.32 mm 13.42 mm 9.68 % 

Tabela 24 Porównanie skuteczność proponowanej metody i SAM, dla sytuacji, gdy lotka upada w pobliżu linii kortu 

Jak widać proponowana przez autora metoda jest istotnie lepsza. Jeśli chodzi o błąd, to SAM 

dla kwadratowego obszaru zainteresowań ma o 2.26mm większy błąd od proponowanej 

metody, czyli przeszło o 32%. Co ciekawe jeśli chodzi o błędną decyzję IN/OUT to mamy tu 

prawie 3 krotnie gorszy wynik. Najlepszy wynik daje metoda SAM dla obszaru prostokątnego, 

ale i tak ma błąd większy o przeszło 19% i daje dwukrotnie gorszy wynik jeśli chodzi o błędną 

decyzję oceny upadku lotki w korcie czy poza nim. 

Jeśli chodzi o czas to działania omawianych metod, to SAM z wykorzystaniem GPU NVidia 

RTX 3070Ti działa średnio 1064,80 ms, a metoda proponowana przez autora z wykorzystaniem 

CPU Intel i9 2.97ms 

Proponowana metoda SAM Uwagi 

  

Pomimo tego że SAM połączył 
część linii kortu z lotką, to tak 
szczęśliwie się złożyło, że korek 
lotki został dość poprawnie 
wysegmentowany i wynik z SAM 
jest lepszy od proponowanej 
metody. Lotka jest daleko od 
kamery - obrazy po lewej są 
istotnie powiększone (całe zdjęcie 
widać w [Tabela 23] – pierwszy 
wiersz) 
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SAM połączył część linii z korkiem 
lotki. Lotka upada w miejscu w 
którym jest łączenie dwóch części 
maty do badmintona. 

  

Pomimo nadmiernej segmentacji 
– maska lotki obejmuje but o 
białej podeszwie, to i tak miejsce 
upadku zostało wyznaczone 
prawidłowo  

  

Obszar zainteresowań nie objął 
całej lotki. SAM połączył cień 
rzucany przez lotkę na linię z 
korkiem lotki. 

  

Lotka upadła blisko kamery i jest 
dobrze oświetlona, a mimo to 
SAM połączył lotkę z linią boczną i 
końcową 

Tabela 25 Przykłady segmentacji lotki przez SAM wraz z omówieniem i porównaniem z proponowaną metodą (kolorem 

purpurowym zaznaczono przewidywane miejsce upadku lotki, a kolorem żółtym ground-truth 
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Największą wadą SAM z punktu widzenia badanego problemu jest to, że często łączy lotkę i 

linie kortu w jeden segment. SAM zadziała dobrze jeśli ma dokładnie wskazany obszar 

zainteresowań. Niestety automatycznie wyznaczony, w procesie detekcji, obszar zainteresowań 

zawsze będzie obarczony pewnym błędem. 
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4. Skuteczność zaproponowanego rozwiązania 

Zaproponowane rozwiązanie składa się z 3 głównych elementów, które szczegółowo zostały 

opisane wcześniej. 

1. Detekcji i śledzenia lotki. 

2. Znajdowania w strumieniu wideo ramki, w której nastąpiło odbicie o podłoże. 

3. Wyznaczenia miejsca upadku lotki i oceny czy było ono w polu gry czy poza nim. 

Ostatecznym celem zaproponowanego rozwiązania jest decyzja - czy lotka upadła w polu gry 

czy poza nim. W tym celu autor przeprowadził ostateczną weryfikację. 

Po wytrenowaniu i walidacji modeli z użyciem danych zebranych w różnych halach i w 

różnorodnych warunkach oświetleniowych, autor przeprowadził ostateczne testy z użyciem 

danych zebranych podczas dwóch turniejów badmintonowych - Mistrzostw Świata seniorów w 

Katowicach oraz mistrzostw Polski U17 w Głubczycach. Podczas tych turniejów były 

rejestrowane tylko te sytuacje, kiedy zawodnik nie zgadzał się z decyzją sędziego. Z takiego 

zbioru danych autor wybrał najtrudniejsze do oceny przez sędziów sytuacje – te, gdy lotka 

upadała na kort w odległości mniejszej niż 4 cm od linii. W ten sposób do testów wybrano 62 

sekwencje wideo. Dla każdej sekwencji autor zaznaczył miejsce upadku lotki i ocenił czy było 

pole czy aut. Anotacje miejsca upadku lotki zostały zweryfikowane przez kwalifikowanego 

sędziego. Przygotowany w ten sposób zbiór testowy został użyty do ostatecznej weryfikacji 

skuteczności proponowanego rozwiązania. 

We wszystkich przypadkach testowych algorytm śledzący lotkę (opisany w rozdziale Detekcja 

i śledzenie lotki) poprawnie znajdował lotkę w momencie odbicia o podłoże i przed odbiciem. 

Dla każdej sekwencji wytrenowany model (opisany w rozdziale Wyznaczenie w strumieniu 

wideo kluczowej ramki, w której nastąpiło odbicie lotki o podłoże) wyznaczył ramkę, w której 

nastąpiło odbicie o podłoże - czyli tę, dla której prawdopodobieństwo zwrócone przez model 

było najwyższe. 

Dla tej ramki za pomocą modelu opisanego w rozdziale Wyznaczenie miejsca odbicia się lotki 

o ziemię w stosunku do referencyjnych linii kortu dla każdej sekwencji wyznaczono miejsce 

odbicia o podłoże i na tej podstawie podjęto decyzję czy lotka upadła w polu gry czy poza nim. 

Ostateczne wyniki przedstawiono tabeli [Tabela 26] 
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Prawdziwe wartości 

IN OUT 

P
rz

ew
id

yw
an

e 

w
ar

to
śc

i 

IN 33 3 

OUT 1 25 

 

              precision    recall  f1-score  liczność 

          IN       0.97      0.92      0.94        36 

         OUT       0.89      0.96      0.93        26 

    accuracy                           0.94        62 

   macro avg       0.93      0.94      0.93        62 

weighted avg       0.94      0.94      0.94        62 

Balanced accuracy  0.94 

Tabela 26 Ostateczne wyniki skuteczności zaproponowanej metody 

Jak widać zaproponowane rozwiązanie myli się w 6%. W porównaniu z sędziami liniowymi, 

którzy podejmują błędne decyzje w 20-24% przypadków (w zależności od doświadczenia) 

proponowane rozwiązanie jest istotnie skuteczniejsze niż człowiek. 

Jeśli chodzi o średni błąd wyznaczenia odległości miejsca upadku od linii, to wyniósł on 

19.48mm. Jest to wynik znacznie gorszy niż ten który został osiągnięty dla przypadków, gdy 

analizowano dokładnie tę ramkę, w której nastąpiło odbicie o podłoże (patrz [Tabela 20]), a nie 

tę ramkę którą wskazał model przewidujący moment odbicia. Zazwyczaj model przewidujący 

moment odbicia robi to dokładnie lub myli się o 1, 2 ramki. Niestety dla zestawu danych 

użytych do testów jest kilka przypadków, gdzie pomyłka modelu wyznaczającego moment 

odbicia o podłoże była większa niż 2 ramki. W szczególności w dwóch przypadkach jest bardzo 

duża i wyniosła odpowiednio 91 i 108 ramek różnicy. Autor przeanalizował te dwa przypadki. 

W jednym przypadku model wyznaczył ramkę wskazującą odbicie o podłoże nie dla 

pierwszego, a dla drugiego odbicia. W drugim przypadku pomyłka była spowodowana tym, że 

algorytm zarejestrował odbicie, lotki, które nastąpiło na korcie obok. Sytuacja ta została 

zarejestrowana dla kamery obserwującej linie tylną, podczas turnieju w Głubczycach, gdzie 

odległości pomiędzy kortami były mniejsze niż te wymagane przepisami. Jeśli odrzuci się te 

dwa przypadki, to wspomniany błąd zmniejsza się do 12.97mm. Jest to mniej niż połowa 

szerokości korka. 
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4.1. Weryfikacja wyniku z systemu przez sędziego technicznego 

Skuteczność na poziomie 94% w porównaniu ze skutecznością sędziów wydaje się 

wystarczająco wysoka, aby zaproponowane rozwiązanie można było wdrożyć komercyjnie. 

Jednakże zawodnicy, jak i organizacje takie jak BWF (Badminton World Federation), BE 

(Badminton Europe) czy chociażby PzBad (Polski związek Badmintona) oczekują 100% 

skuteczności. Dlatego też autor opracował dodatkowy haptyczny interfejs do systemu 

umożliwiający weryfikację decyzji systemu przez sędziego [Rysunek 61, Rysunek 62]. W 

przypadku, gdy sędzia analizując zapis wideo w zwolnionym tempie (ramka po ramce) 

zauważy pomyłkę systemu, to ma możliwość korekty wyznaczonego miejsca upadku. Dzięki 

wyjątkowo wygodnemu interfejsowi [Rysunek 62] weryfikacja zajmuje maksymalnie 

kilkanaście sekund.  

 

Rysunek 61 Sędziowie testujący system podczas jego weryfikacji w trakcie turnieju w Częstochowie 
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Rysunek 62 Dotykowy interfejs wraz z unikalnym sposobem przewijania zapisu wideo 
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5. Dyskusja i podsumowanie rozprawy 

Lotka do badmintona może osiągać prędkość przekraczającą 400 km/h, co czyni tę grę 

najszybszym ze wszystkich sportów pod względem dynamiki. Niewielki rozmiar korka oraz 

zmienna prędkości lotki powodują, że sędziom niezwykle trudno jest precyzyjnie ocenić 

miejsce upadku lotki na kort. 

W ramach doktoratu wdrożeniowego autor podjął się opracowania systemu wspomagającego 

decyzje sędziowskie w badmintonie. Opracowanie użytecznego rozwiązania nie jest zadaniem 

banalnym i należy rozwiązać wiele problemów naukowych i technicznych, aby takie 

rozwiązanie można było wdrożyć. W niniejszej rozprawie autor dokładnie omówił trzy z nich: 

• detekcja i śledzenie lotki, 

• wyznaczenie kluczowej ramki, w której nastąpiło odbicie o podłoże, 

• wyznaczenie miejsca odbicia lotki o podłoże. 

W porównaniu z innymi sportami rozwiązanie przedstawionych problemów badawczych jest 

szczególne trudne w badmintonie ze względu na: 

• Zmienną prędkość lotki. Lotka może mieć przy podłożu prędkość 10-krotnie niższą niż 

w momencie uderzenia przez zawodnika. Dla porównania: piłka tenisowa traci około 

połowę swojej prędkości. 

• Niestabilną i zależną od wielu czynników trajektorię lotki, podatną na zmianę 

spowodowaną ruchami powietrza. 

• Niewielki rozmiar korka lotki, przeszło dwa razy mniejszy od średnicy piłki tenisowej 

[Rysunek 64]. 

• Biały kolor lotki, który zlewa się z białymi liniami. 

• Rozmycie lotki na rejestrowanym obrazie spowodowane jej ruchem postępowym i 

wirowym. 

• Sztuczne oświetlenie, które nie jest tak silne jak naturalne oświetlenie dzienne i w 

zasadzie wykluczające rejestrację wideo z prędkością powyżej 200 klatek na sekundę. 

• Różnorodne warunki oświetleniowe w halach (często wyposażonych w migoczące z 

częstotliwością 50Hz lampy). 

• Różnorodne warunki przestrzenne, często zmieniające się nawet w czasie tego samego 

turnieju. 
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• Różnorodne dodatkowe obiekty, pojawiające się w niewielkiej odległości od linii kortu, 

takie jak banery reklamowe, kamerzyści, czy też zawodnicy grający na korcie obok. 

O tym, że badany problem jest wyjątkowo trudny, świadczy również znikoma liczba publikacji 

naukowych omawiających badane przez autora zagadnienia. W szczególności temat upadku 

lotki w korcie lub poza nim podjęto tylko w jednej znanej autorowi publikacji [78]. Co ciekawe: 

zagadnienie lokalizacji piłki względem referencyjnych linii pola gry dla innych dyscyplin 

sportowych, takich tenis, piłka nożna, czy też siatkówka, również nie jest szeroko badane przez 

innych naukowców. W liczącej 68 stron publikacji Comprehensive Review of Computer Vision 

in Sports: Open Issues, Future Trends and Research Directions [14] autorzy umieścili 292 

referencje do publikacji dotyczących wizji komputerowej w sporcie, ale nie wskazali ani jednej 

referencji do publikacji poruszających temat lokalizacji piłki/lotki w stosunku do 

referencyjnych linii pola gry. Stosunkowo dużo jest publikacji dotyczących metod detekcji i 

śledzenia piłki lub graczy (głównie wykorzystujących głębokie sieci neuronowe). Już to, że tak 

mało jest badań innych naukowców, czyni badania autora wyjątkowymi w skali światowej. 

Autor podejrzewa, iż oprócz obiektywnych trudności związanych z gromadzeniem danych 

podczas zawodów sportowych (organizator zawodów musi wyrazić zgodę na umieszczenie 

sprzętu rejestrującego w hali i zapewnić badaczom choćby dostęp do zasilania oraz dodatkową 

przestrzeń w obiekcie), brak zainteresowania badaczy tym tematem wynika również z tego, że 

istniejący od 20 lat system Hawk-Eye zmonopolizował rynek oprogramowania 

wspomagającego decyzje sędziowskie. Szalenie trudno jest stworzyć konkurencyjne 

rozwiązanie do takiego, które jest już rozwijane komercyjnie od 20 lat. 

Mimo to autor podjął to wyzwanie, licząc na to, że dzięki swojemu zaangażowaniu i 

wykorzystaniu unikalnej wiedzy domenowej, zdoła opracować rozwiązanie, które będzie 

użyteczne rynkowo. 

Autor, będąc zawodnikiem, dobrze zna środowisko badmintonowe, dzięki czemu organizatorzy 

turniejów i Polski Związek Badmintona przychylnie patrzyli na jego prace i pozwalali na 

umieszczanie podczas zawodów sprzętu rejestrującego. Wspomniany turniej w Katowicach 

trwał 9 dni i przez te 9 dni, codziennie przez 10 godzin, autor znajdował się w hali i rejestrował 

dane oraz testował opracowane rozwiązanie. 

Dzięki temu autor miał możliwość zgromadzenia zróżnicowanych zapisów wideo i 

przetestowania różnorodnych ustawień sprzętu rejestrującego oraz zauważenia istotnych 

ograniczeń, mających wpływ na jego badania. Inni badacze często nie mają takich możliwości 
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i zmuszeni są analizować zapisy wideo z transmisji telewizyjnych lub rejestrują dane w 

jednorodnych warunkach laboratoryjnych. 

Autorowi udało się opracować satysfakcjonujące rynek rozwiązanie, co nie oznacza, że nie jest 

ono pozbawione wad i nie ma miejsca na poprawę. Poniżej wypunktowano wady i zalety 

opracowanej metody w podziale na cztery kategorie. 

1. Ogólna ocena rozwiązania 

➢ Zalety: 

▪ Rozwiązanie efektywne kosztowo. 

▪ Działające w czasie rzeczywistym. 

▪ Szybki montaż i bezproblemowy transport - nie są wymagane kamery nad kortem. 

▪ Przetestowane w realnych warunkach turniejowych. 

▪ Zintegrowane z systemami live scoring i live streaming. 

➢ Wady: 

▪ Dokładność lokalizacji miejsca upadku lotki niewiele lepsza niż akceptowalna przez 

rynek - 13mm. 

▪ Nie zawsze wynik jest zgody z prawdą i wymaga korekcji przez sędziego 

technicznego, co wydłuża do kilkunastu sekund czas, po którym zawodnicy widzą 

oficjalną decyzję. 

▪ Brak rejestracji całej trajektorii lotki – nie można zebrać interesujących statystyk, 

takich jak na przykład średnia prędkość początkowa uderzenia kończącego. 

2. Detekcja i śledzenie lotki 

➢ Zalety: 

▪ Metoda wyjątkowo efektywna czasowo. 

▪ Metoda wyjaśnialna – jasne kryteria odrzucania kandydatów na lotkę. 

➢ Wady: 

▪ Konieczne wstępne przetwarzanie obrazu i usunięcia efektu migotania. 

▪ Jeśli traker zacznie śledzić obiekt, to dopóki go nie zgubi, nie zacznie śledzić innego 

obiektu. Nie został rozwiązany problem, który powstaje, gdy najpierw pojawia się 

w polu widzenia kamery lotka z kortu obok i, mimo że w polu widzenia może się 

pojawić po chwili druga lotka (i to z kortu, który nas interesuje), to i tak traker nie 

rozpocznie jej śledzenia, dopóki nie przestanie śledzić pierwszej lotki. 

▪ Przybliżona pozycja korka na etapie detekcji. Nie jest ona wystarczająco dokładna 

do wiarygodniej oceny miejsca upadku lotki. 
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▪ Rzucany przez będącą przy podłożu lotkę cień powoduje, że ma on istotny wpływ 

na wyznaczenie pozycji korka przez traker. 

▪ Często lotka jest gubiona zaraz po odbiciu. W opracowanej metodzie nie ma to 

większego znaczenia, jednakże ogranicza możliwości poprawy dokładności 

metody. 

3. Wyznaczenie kluczowej ramki 

➢ Zalety: 

▪ Szybkość działania. 

➢ Wady: 

▪ Silne założenia wejściowe – działa w połączeniu z trakerem i korzysta z danych 

dostarczonych przez moduł śledzący lotkę. Błędne dane z trakera powodują błędy 

w wyznaczeniu kluczowej ramki. 

▪ Możliwe bardzo duże pomyłki. W szczególności, gdy kluczowa ramka zostanie 

wyznaczona w momencie drugiego odbicia się lotki o podłoże. 

4. Precyzyjna segmentacja korka lotki i lokalizacja miejsca odbicia w stosunku do linii 

kortu 

➢ Zalety: 

▪ Szybkość działania. 

▪ Działa dokładniej niż uznany za state of the art Segment Anything Model. 

➢ Wady: 

▪ Zależy od danych dostarczonych przez moduł detekcji i śledzenia lotki – trajektorii 

i szerokości lotki. Błędne dane z trakera mogą powodować błędną segmentację 

korka lotki. 

▪ Cień lotki może powodować błędne wyznaczenie korka od lotki 

▪ Metoda zakłada, że lotka musi mieć ciemny pasek oddzielający korek od piór. Tego 

nie wymagają przepisy, ale autor do tej pory nie widział lotki, która nie miałaby tego 

paska. Niestety, jeśli lotka nie będzie posiadać czarnego paska, metoda całkowicie 

przestanie działać. 

W ocenie autora oryginalność opracowanej metody polega na osiągnięciu zadowalających 

rezultatów (w czasie rzeczywistym) w różnorodnych środowiskach przy wykorzystaniu 

ograniczonych zasobów sprzętowych i finansowych. Nie byłoby to możliwe, gdyby nie 

posiadana przez autora wiedza domenowa. 
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W związku z coraz większą świadomością widzów i zawodników, jakie są możliwości 

wizyjnych systemów komputerowych, oczekuje się, że systemy wspomagające decyzje 

sędziowskie będą coraz powszechniej stosowane podczas każdego turnieju, a nie tylko w czasie 

największych imprez. Aby było to osiągalne, muszą one być możliwie przystępne. Oznacza to 

umiarkowany koszt oraz łatwość montażu i transportu, co zapewnia opracowane przez autora 

rozwiązanie. 

Udoskonalenie metody wymaga dalszych badań. W szczególności warto zbadać najnowsze 

modele sieci neuronowych. Coraz tańszy i wydajniejszy sprzęt oraz coraz większe możliwości 

sieci neuronowych powodują, że w niedługiej przyszłości metody bazujące na sieciach 

neuronowych mogą działać dokładniej i równie efektywnie czasowo, jak metoda opracowana 

przez autora. 

Na zakończenie autor chciałby poruszyć temat certyfikacji systemów wspomagających decyzje 

sędziowskie przez związki sportowe. Rozwiązanie opracowane przez autora wspólnie z panem 

Nowiszem zostało certyfikowane przez Polski Związek Badmintona oraz zaakceptowane przez 

światową organizację badmintona (BWF), ale w ocenie autora procedura, którą kierował się 

PzBad i BWF pozostawia wiele do życzenia. 

Procedura weryfikacji systemu przez przedstawicieli BWF miała miejsce podczas turnieju 

Yonex Polish Open w Częstochowie. Polegała ona na tym, że wyznaczeni sędziowie korzystali 

systemu  podczas zawodów „w cieniu”. Zawodnicy nie mieli możliwości poproszenia o wideo 

weryfikację, ale sędziowie pracujący „w cieniu” weryfikowali decyzję sędziów liniowych, 

porównując ją z decyzją systemu i analizując zapis losowo wybranych nagrań wideo, oceniali 

skuteczność weryfikowanego rozwiązania. Autor musi uczciwie przyznać, że taka procedura 

nie jest obiektywna, a decyzja o dopuszczeniu do użytku podczas zawodów systemu 

wspomagającego sędziów (takiego jak opisany w tej rozprawie czy też podobnego), zależy 

tylko od pisemnej rekomendacji sędziów, a nie od mierzalnych wskaźników. 

Brak oficjalnej procedury weryfikacyjnej powoduje, że dostawcy takich systemów nie mogą 

rzetelnie porównać swoich rozwiązań. Skutkuje to również tym, że trudno jest podważyć 

podejmowane przez oficjeli związków sportowych decyzje o dopuszczeniu rozwiązania do 

użytku podczas zawodów. Mając na uwadze brak oficjalnych wytycznych, autor, 

przeprowadzając swoje badania, korzystał z własnych zbiorów danych, a eksperymenty 

przeprowadził zgodnie z ogólnie przyjętymi standardami i swoją najlepszą wiedzą. 
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Warto nadmienić, że Światowa Federacja Tenisa (ITF) udostępnia na swojej stronie 

internetowej niezmienną od 2020 roku oficjalną procedurę ewaluacyjną takich systemów [117], 

ale procedura ta nie mówi, jak mierzyć dokładność systemu. W celu ewaluacji procedura 

zakłada użycie kamer szybkoklatowych - “high-speed video cameras are used as the sole and 

definitive method by which accuracy is established. The “mark” left on the court surface 

following impact is used only to aid in the selection of impacts to analyze”. 

Zgodnie z tymi wytycznymi, autor również użył zapisu wideo z kamer szybkoklatkowych do 

weryfikacji skuteczności systemu, a nie badał śladu odbicia na podłożu, na którym taki ślad 

byłby widoczny - na przykład na rozsypanym proszku. 

Z powodu braku oficjalnych zbiorów danych (zatwierdzonych i udostępnionych przez 

organizacje sportowe) trudno jest ocenić, czy wskazana przez autora dokładność jest lepsza 

bądź też gorsza niż dokładność rozwiązań istniejących już na rynku. Co więcej - firmy, które 

mają w swojej ofercie takie systemy, nie udostępniają żadnych testowych zbiorów danych, ani 

też sposobu obliczenia mierzalnych wskaźników. Autorowi udało się dotrzeć jedynie do 

marketingowej informacji z firmy Hawk-Eye, że ich system lokalizacji miejsca odbicia piłki w 

tenisie ma średni błąd na poziomie 3.6mm. Wspomniana firma nie udostępnia takiej informacji 

w przypadku badmintona. Według autora ze względu na to, iż korek lotki jest znacznie mniejszy 

niż piłka do tenisa [Rysunek 64] oraz to, że lotka jest biała i zlewa się z białymi liniami, a piłka 

do tenisa jest zielona i wyraźnie odcina się od linii, problem oceny, czy lotka upadła w polu 

gry, czy poza nim, jest dużo trudniejszy niż ocena, czy piłka tenisowa odbiła się w korcie czy 

poza nim. Nie bez znaczenia jest też to, że tenisiści w momencie odbicia piłki o kort, są w 

znacznie większej odległości od niej niż badmintoniści od lotki. Brak dodatkowych obiektów 

na korcie tenisowym również znacznie ułatwia segmentację piłki tenisowej. 

Najdłużej dostępnym na rynku systemem elektronicznej oceny upadku piłki w polu gry bądź 

poza nim jest system firmy Hawk-Eye, który od 2024 roku zastąpił sędziów liniowych na 

największych turniejach tenisowych rozgrywanych na nawierzchni twardej. Interesujące jest 

to, że wspomniany system nie jest używany na mączce. Na tej nawierzchni w przypadku 

wątpliwości sędzia po prostu sprawdza ślad odbicia piłki. 

Według autora obecne rozwiązania, jakkolwiek są skuteczniejsze w podejmowaniu decyzji 

IN/OUT niż ludzie, to nie są skuteczne w 100% [100, 102]. Dodatkowo autor pragnie zwrócić 

uwagę, że decyzja systemu jest prezentowana publiczności w postaci komputerowej animacji, 

a nie jako prawdziwy zapis wideo. Ma to podstawową zaletę - nawet jeśli decyzja systemu jest 
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błędna, to zawodnicy z nią nie dyskutują, gdyż nie mają referencyjnego zapisu wideo ani śladu 

na korcie. 

W przypadku tenisa wspomniany system Hawk-Eye prezentuje decyzję IN/OUT od razu, a w 

przypadku badmintona - decyzja jest prezentowana po kilkunastu sekundach. Autor uważa, że 

w badmintonie decyzja systemu Hawk-Eye jest również weryfikowana przez oddelegowanego 

sędziego technicznego. Przykładowo: podczas meczu Caroline Marin w 1/8 finału igrzysk w 

Paryżu 2024 na decyzję systemu widzowie musieli czekać aż 45 sekund. Autor na podstawie 

zapisów wideo 16 meczów badmintona, rozegranych podczas Mistrzostw Świata z 2021 roku, 

obliczył średni czas, jaki potrzebny był na prezentację IN/OUT systemu Hawk-Eye (18,00 s) i 

porównał to ze średnim czasem, jaki był potrzebny na prezentację wyniku z systemu 

opracowanego poprzez autora (18,43 s). 

Opracowane rozwiązanie, ze względu na brak kamer nad kortem, potrzebuje mniej sprzętu i 

okablowania niż wspomniany Hawk-Eye [118], a wszystko, co jest potrzebne do instalacji 

systemu na korcie, mieści się w bagażniku większego samochodu osobowego [Rysunek 63]. 

 

Rysunek 63 Cały sprzęt potrzebny do instalacji systemu na jednym korcie 

 

Rysunek 64 Porównanie wielkości lotki z piłką do tenisa i squash20 

 
20 Źródło: https://www.dimensions.com/element/badminton-shuttlecock 
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Opracowana metoda od samego początku była tworzona z myślą o badmintonie. Z tego też 

powodu nie może zostać bezpośrednio wykorzystana w innych dyscyplinach sportu. 

Uogólnienie metody na inne dyscypliny sportu wymaga zmian w algorytmach (dopasowanie 

wartości progowych, zmiana zestawu wyliczanych cech dla modeli) oraz zebraniu nowego 

zbioru danych do testów. Jednakże pewna część bibliotek, które powstały podczas tworzenia 

oprogramowania, może zostać wykorzystana, np. interfejs do kamer rejestrujących dane, 

biblioteka usuwająca efekt migotania oświetlenia, równoległe przetwarzanie strumienia wideo 

z wielu kamer.  

Kolejne kroki, które wykonuje oprogramowanie, wspomagające sędziów liniowych w sportach, 

gdzie mamy piłkę i ograniczone pole gry, są w ogólności takie same, aczkolwiek ze względu 

na różne specyfiki poszczególnych gier, w detalach będą się różnić. Przykładowo: piłka do 

siatkówki, w przeciwieństwie do lotki, ulega mocnym odkształceniom w momencie odbicia o 

parkiet i ta jej właściwość musi zostać uwzględniona podczas opracowywania algorytmów 

oceniających, czy piłka była w polu gry, czy poza nim. 

Podsumowując: autor ma nadzieję, że przeprowadzone przez niego badania przyczynią się do 

popularyzacji systemów wspomagania decyzji sędziowskich w jego ulubionej dyscyplinie 

sportowej, a związki sportowe opracują obiektywne procedury certyfikacji takich systemów. 
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6. Słowniczek pojęć 

1. System challenge w sporcie to mechanizm, który pozwala zawodnikom lub drużynom 

na zgłoszenie wątpliwości co do decyzji sędziowskiej i poproszenie o jej ponowne 

rozpatrzenie z wykorzystaniem technologii wspomagającej. Zwykle system ten jest 

wspomagany przez powtórki wideo, lub zaawansowane systemy komputerowe 

analizujące  a decyzja sędziego może być zmieniona, jeśli analiza technologiczna 

wykaże, że doszło do błędu. 

2. Erozja to jedna z podstawowych operacji morfologicznych, stosowana głównie do 

przetwarzania obrazów binarnych. Erozja powoduje "kurczenie" się obiektów w 

obrazie, co oznacza zmniejszanie rozmiaru białych obszarów na obrazie binarnym. 

Oblicza lokalne minimum na obszarze danego jądra. Erozja podczas przesuwaniu jądra 

(elementu strukturalnego o zadanej wielkości) po obrazie oblicza minimalną wartość z 

pikseli nakładających się na jądro i zastępuje analizowany piksel obrazu tą wartością. 

3. Deskryptor - Zestaw cech, które reprezentują obiekt lub dane. Deskryptory są używane 

do opisywania i porównywania obiektów, umożliwiając ich identyfikację lub 

klasyfikację. 

4. IoU - Intersection over Union - miara używana do oceny jakości modeli 

segmentacyjnych i detekcyjnych w zadaniach związanych z wizją komputerową. IoU 

mierzy, jak dobrze wykryty obiekt (tzw. predykcja) pokrywa się z rzeczywistym 

obiektem (tzw. ground truth). 

5. IoU jest obliczane jako stosunek pola wspólnego części wykrytej przez model 

(Intersection) do pola sumy obu obszarów (Union) zgodnie ze wzorem: 

𝐼𝑜𝑈(𝐴, 𝐵) =
(𝐴 ∩ 𝐵)

(𝐴 ∪ 𝐵)
 

Gdzie A – Obszar zajmowany przez predykcję,  

B – Obszar zajmowany przez ground truth 

Wynik IoU mieści się w przedziale od 0 do 1, gdzie: 

IoU = 0: Brak pokrycia predykcji z rzeczywistym obiektem. 

IoU = 1: Idealne pokrycie predykcji z rzeczywistym obiektem. 
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Można to przedstawić graficznie: 

 

Rysunek 65 Graficzna reprezentacja miary IOU21 

6. Confusion matrix (macierz pomyłek) - narzędzie używane do oceny wydajności 

modeli klasyfikacyjnych. Jest to tabela, która wizualizuje, jak dobrze model klasyfikuje 

próbki do odpowiednich klas, porównując przewidywane klasy z rzeczywistymi 

klasami. 

Macierz pomyłek składa się z czterech podstawowych elementów: 

1. True Positives (TP) – Liczba próbek poprawnie zaklasyfikowanych do danej 

klasy. 

2. True Negatives (TN) – Liczba próbek, które model poprawnie zaklasyfikował 

jako nie należące do danej klasy. 

3. False Positives (FP) – Liczba próbek błędnie zaklasyfikowanych jako należące 

do danej klasy (tzw. fałszywe alarmy). 

4. False Negatives (FN) – Liczba próbek, które model błędnie sklasyfikował jako 

nie należące do danej klasy, mimo że faktycznie do niej należały. 

Przykład macierzy pomyłek dla klasyfikacji binarnej: 

 
Predykcja: 

Pozytywna 

Predykcja: 

Negatywna 

Rzeczywista: 

Pozytywna 

True Positive (TP) False Negative (FN) 

Rzeczywista: 

Negatywna 

False Positive (FP) True Negative (TN) 

 

 
21 Źródło: https://machinelearningspace.com/intersection-over-union-iou-a-comprehensive-guide/ 
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7. Precision (precyzja) - miara używana w klasyfikacji binarnej i wieloklasowej 

określająca, jaki procent z wykrytych przez model pozytywnych przykładów jest 

faktycznie poprawny. Precision skupia się na tym, jak trafne są pozytywne predykcje 

modelu, czyli ile z nich rzeczywiście należy do klasy pozytywnej. Wyraża się wzorem: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝐹𝑃)
 

Gdzie: 

True Positives (TP) – liczba prawidłowo wykrytych pozytywnych 

przykładów. 

False Positives (FP) – liczba przykładów błędnie zaklasyfikowanych 

jako pozytywne. 

Wysoka precyzja oznacza, że model generuje niewiele fałszywych alarmów (False 

Positives), czyli większość predykcji pozytywnych jest trafna. Niska precyzja wskazuje, 

że wiele przykładów zaklasyfikowanych jako pozytywne w rzeczywistości do tej klasy 

nie należy. 

Precision jest szczególnie ważne w sytuacjach, gdy fałszywe alarmy mają duże 

konsekwencje, np. w diagnostyce medycznej. 

8. Recall (czułość) - miara używana w klasyfikacji, która określa, jaki procent 

rzeczywistych pozytywnych przykładów został poprawnie wykryty przez model. 

Wyraża się wzorem: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃)

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 (𝑇𝑃) + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 (𝐹𝑁)
 

Recall mierzy, jak dobrze model potrafi wykryć wszystkie przypadki należące do klasy 

pozytywnej.  

9. F1 (F1-score) - miara używana do oceny jakości modeli klasyfikacyjnych, która 

pokazuje, jak dokładnie model oddaje wyniki, mające znaczenie. Należy zauważyć, że 

im bardziej niezrównoważony jest zestaw danych, tym niższy może być wynik F1, 

nawet przy tej samej dokładności ogólnej. Miara ta jest szczególnie przydatna, gdy 

mamy do czynienia z niezrównoważonymi danymi, gdzie jedna klasa występuje 

znacznie częściej niż inne. F1-score balansuje między precyzją a czułością, dając ogólną 

miarę wydajności modelu i wyraża się wzorem: 
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𝐹1 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

10. Accuracy (dokładność) - miara wydajności modeli klasyfikacyjnych, określająca 

procent poprawnych przewidywań względem wszystkich przewidywań modelu. Mówi 

ona, jak często model klasyfikuje poprawnie zarówno pozytywne, jak i negatywne 

przykłady i wyraża się wzorem: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Accuracy może być mylące w przypadku niezrównoważonych zbiorów danych, gdzie 

jedna klasa jest znacznie liczniejsza niż inne. W takich sytuacjach model może osiągać 

wysoką dokładność, ale niekoniecznie dobrze radzić sobie z klasą mniejszościową. W 

takich przypadkach lepiej jest użyć innych miar: F1, ballanced accuracy 

11. Ballanced accuracy - miara wydajności modeli klasyfikacyjnych, szczególnie 

przydatna w przypadku niezrównoważonych zbiorów danych, gdzie jedna klasa jest 

znacznie liczniejsza od innych. Miara accuracy (dokładność) może być myląca, gdy 

jedna klasa dominuje, dlatego balanced accuracy koryguje tę nierówność, biorąc pod 

uwagę dokładność dla każdej klasy oddzielnie. Dla klasyfikacji binarnej wyraża się 

wzorem: 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

2
(

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
) 

12. Mean average precision (mAP) - miara wydajności modeli wykrywania obiektów i 

segmentacji obrazów, często używana w zadaniach związanych z wizją komputerową. 

Ocena ta jest kombinacją dwóch aspektów: precyzji (ang. precision ) oraz czułości 

(ang. recall), gdzie precyzja mierzy, jaki odsetek wykryć jest prawidłowy, a czułość 

określa, jaki odsetek rzeczywistych obiektów został wykryty. mAP oblicza się poprzez 

znalezienie średniej precyzji (average precision - AP) dla każdej klasy i następnie 

uśrednienie jej dla zadanej liczby klas zgodnie z wzorem: 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘

𝑘=𝑛

𝑘=1

 

Gdzie: 

n – liczba klas, 

APk – Średnia precyzja dla klasy k 
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Average Precision (AP) to miara, która ocenia jakość modelu wykrywania obiektów 

na podstawie krzywej precyzji i czułości. Jest to zintegrowana wartość z tej krzywej, 

która mierzy, jak dobrze model wykrywa obiekty, biorąc pod uwagę różne progi 

decyzyjne (próg decyzyjny oznacza wartość predykcji powyżej, której model 

przydzielił próbkę do danej klasy – zazwyczaj 0.5). AP ocenia zarówno liczbę 

poprawnych wykryć (precyzja), jak i zdolność modelu do wykrywania wszystkich 

obiektów (czułość). Wartość AP można obliczyć jako pole pod krzywą precyzji i 

czułości (PR-AUC). Dla zestawu progów decyzyjnych czułości R i odpowiadających 

im precyzji P, AP jest definiowane jako: 

𝐴𝑃 = ∫ 𝑃(𝑅) 𝑑𝑅

1

0

 

W praktyce, zamiast ciągłej krzywej, oblicza się sumę wartości precyzji dla różnych 

wartości czułości. AP jest uśrednianą wartością precyzji dla różnych poziomów 

czułości, zwykle mierzonych w punktach z zestawu progów decyzyjnych. 

Jakość modeli segmentacji obiektów podaje w połączeniu mAP i IoU  - mAP@IoU, 

podając średnią precyzję modelu obliczoną przy zastosowaniu progu Intersection over 

Union (IoU). Przykładowo mAP@0.50 = 0.77 oznacza, że model uzyskał mAP równe 

0.77 przy założeniu IoU o wartości 0.50 i wyższej. Próg 0.50 oznacza, że wykrycie 

obiektu przez model zostanie uznane za poprawne, jeśli obszar predykcji pokrywa co 

najmniej 50% rzeczywistego obszaru obiektu. 

13. RANSAC (Random Sample Consensus) - algorytm, służący do dopasowania modelu 

do danych z dużą ilością szumów lub wartości odstających (outliers). Jest powszechnie 

używany w takich zadaniach jak estymacja parametrów modelu, dopasowanie linii, 

płaszczyzn, czy homografii w obrazach. RANSAC działa iteracyjnie i polega na 

próbkowaniu danych w celu znalezienia najlepszego modelu. Kolejne kroki algorytmu 

są następujące: 

1. Losowy wybór próbek. 

Losowo wybierana jest minimalna liczba punktów danych potrzebnych do 

estymacji parametrów modelu. Dla dopasowania linii wystarczą dwa punkty, dla 

dopasowania płaszczyzny trzy punkty itp. 

2. Dopasowanie modelu. 

Na podstawie wybranych punktów estymowane są parametry modelu. Model 

ten jest dopasowywany wyłącznie na podstawie losowo wybranych próbek. 
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3. Ocena zgodności modelu (Consensus). 

Sprawdzane jest, ile punktów z całego zbioru danych pasuje do tego modelu, 

czyli znajduje się "blisko" modelu (zgodnie z ustalonym progiem tolerancji na 

odległość). Punkty te są nazywane inlierami, a punkty, które nie pasują, są 

outlierami. 

4. Iteracyjne powtarzanie kroków 1-3. 

Kroki 1-3 są powtarzane wielokrotnie (przez ustaloną liczbę iteracji). Za 

każdym razem algorytm losuje nowy zestaw próbek i dopasowuje model. 

5. Wybór najlepszego modelu. 

Spośród wszystkich iteracji wybierany jest model, który ma największą liczbę 

inlierów (punktów zgodnych z modelem). Ten model uznaje się za ostateczne 

rozwiązanie. 

6. Estymacja końcowa. 

Na podstawie wszystkich inlierów wybranego modelu, przeprowadza się 

ostateczne dopasowanie modelu. 

14. SHAP - technika wyjaśnialności modeli uczenia maszynowego, która opiera się na 

wartościach Shapleya. Wartości te pochodzą z teorii gier kooperacyjnych i służą do 

wyjaśnienia wpływu poszczególnych zmiennych na wynik modelu predykcyjnego. 

Główna idea polega na obliczeniu, jak duży wpływ na ostateczną predykcję miałaby 

każda z nich, gdybyśmy ją stopniowo dodawali do modelu.  

SHAP tworzy wszystkie możliwe kombinacje cech i oblicza zmiany w przewidywanej 

wartości, gdy dana cecha jest dodawana do podzbioru innych cech. Na podstawie tych 

kombinacji oblicza, jak bardzo dana cecha przyczynia się do zmiany wyniku predykcji.  

Wartości Shapleya są idealne do wyjaśniania modeli uczenia maszynowego, ponieważ 

odpowiadają na pytanie: Jaki jest wpływ każdej cechy na wynik predykcji? SHAP łączy 

te wartości z metodami interpretacji modeli i pozwala na wyjaśnianie złożonych modeli 

takich jak XGBoost, SVM i sieci neuronowe. 

Główną wadą SHAP jest wysoki koszt obliczeniowy zwłaszcza dla dużych zbiorów 

danych i modeli o wielu cechach. Jednak dostępne są przybliżone metody, takie jak 

Kernel SHAP i Tree SHAP, które znacząco obniżają koszt obliczeniowy. 
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