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Streszczenie

Badminton uchodzi za najszybszy sport na $§wiecie. Podczas meczu badmintona lotka w
momencie uderzenia moze poruszac si¢ z predkoscig przekraczajaca 400 km/h [1, 2]. Aktualny
rekord predkosci zarejestrowany przez firm¢ Yonex (producent sprzetu do badmintona) w
kontrolowanym $rodowisku w dniu 14 kwietnia 2023 wynosi az 565 km/h [3] i jest lepszy od
poprzedniego z 2013 roku o 72 km/h [4]. Cho¢ po samym uderzeniu lotka gwattownie zwalnia,
w momencie upadku na ziemi¢ jej predkos¢ jest na tyle wysoka, ze ludzkie oko nie jest w stanie
doktadnie okresli¢ miejsca odbicia lotki od podtoza. Skutkuje to do§¢ czestymi pomytkami
sedziowskimi — okoto 20%-24% decyzji s¢dziow jest bledna [5, 6], co prowadzi do wielu
realnych probleméw, m.in. niesprawiedliwych werdyktow sedziowskich wypaczajacych
przebieg zawoddéw, przedhuzajacych si¢ kontrowersji, czy dyskusji uderzajacych w
atrakcyjnos¢ rozgrywek. Gtowna motywacja realizowanych badan byto opracowanie narzedzia
wspomagajacego, ktore usprawnitoby prace sedziow liniowych — ograniczajac liczbe ich
btednych decyzji, zwigkszajac klarownos$¢ analizy 1 przyspieszajac konsensus w przypadkach

watpliwych przez obiektywizacj¢ dokonywanych ocen.

Zasadniczym osiggni¢ciem przedstawionym w niniejszej rozprawie jest oryginalne rozwigzanie
w zakresie zastosowania wynikow wlasnych badan naukowych w sferze gospodarcze;j,
polegajace na konstrukcji efektywnego modelu zachowan upadajacej lotki wzgledem linii
referencyjnych, pozwalajacego ustali¢ 1 zinterpretowaé miejsce upadku lotki przy mozliwie
duzej odpornosci na roznorodne, praktyczne zaktocenia i realistycznie zmieniajace si¢
uwarunkowania pomiarowe. Uzyskane wyniki wlasnych badan naukowych zostaty
zweryfikowane wzgledem realnych zastosowan w sferze gospodarczej. Przeprowadzone w
okresie kilku lat badania, oraz prace wdrozeniowe, ktore przedstawiono w niniejszej rozprawie,
skutkowaty opracowaniem i zaimplementowaniem praktycznego, komercyjnego systemu,
ktory w warunkach realnych rozgrywek skutecznie wspomaga se¢dziow zawodow
badmintonowych w ocenie miejsca upadku lotki i podjeciu kluczowej decyzji: ,, w korcie” lub
,, aut”. Unikalnym pomystem odr6zniajgcym badania autora od znanych z literatury [7,8,9,10]
jest wyznaczenie momentu i miejsca upadku lotki w stosunku do linii kortu z wykorzystaniem
uktadu pomiarowego, w ktérym kazda z kamer obserwuje swoja przestrzen (okreslong linig
kortu) a nie jak to jest w zazwyczaj spotykanych implementacjach, gdzie wiele kamer

obserwuje te samg przestrzen (najczesciej caty kort).

Niniejsza rozprawa zostata przygotowana w ramach doktoratu wdrozeniowego edycji III.

Celem doktoratu wdrozeniowego okreslonym przez Ministerstwo Nauki i1 Szkolnictwa



Wyzszego jest ,rozwigzanie oryginalnego problemu naukowego oraz zagadnienia
praktycznego, w taki sposob, aby powstale rozwigzanie mozna byto wdrozy¢”. W zwiazku z
powyzszym oprocz rozwigzan konkretnych probleméw naukowych, w niniejszej rozprawie,
przedstawiono rowniez istotny aspekt praktyczny i biznesowy. Konkretne osiggnigcie naukowe
zostalo wdrozone w sferze gospodarczej — kompleksowy system wspomagania
(wielokamerowy uktad pomiarowy, strumieniowanie danych o duzej rozdzielczosci czasowej,
metody analizy i interpretacji wideo online, sugerowane decyzje wspierajace prace s¢dziow),
opracowany wspoélnie z drugim doktorantem, Jarostawem Nowiszem. System ten zostat
zweryfikowany w praktyce podczas realnych zawodow sportowych, m.in. na Mistrzostwach
Swiata senioréw w Katowicach. Wyniki z systemu byty prezentowane nie tylko sedziom, ale
tez wyswietlane na gtéwnym ekranie w hali oraz podczas transmisji telewizyjnej. Zastosowane
rozwiazanie calkowicie wyeliminowato watpliwo$ci zawodnikéw dotyczace miejsca upadku
lotki — w polu gry czy poza nim. Wida¢ to doskonale na zapisie transmisji wideo z tych
zawodow, ktory jest dostepny W serwisie youtube.com. Linki do kluczowych momentow

transmisji prezentujacych efekt dziatania systemu sg podane w referencji [11] oraz [12].
W ramach prac badawczych autor podjal samodzielnie nastgpujace zagadnienia:

- detekcja, segmentacja i $ledzenie zachowan lotki (tj. niewielkich, szybko opadajacych
obiektow o specyficznych cechach statycznych i dynamicznych) wzgledem podtoza
pokrytego liniami referencyjnymi na podstawie rejestrowanych online strumieni wideo,

- wyznaczenie ramki kluczowej, najblizszej chwili upadku (odbicia lotki od kortu) celem
precyzyjnej lokalizacji miejsca odbicia,

- lokalizacja miejsca upadku (odbicia od podtoza) korka lotki wzgledem referencyjnych
linii kortu i okreslenie, czy w momencie odbicia lotka znajdowata si¢ w polu gry czy
poza nim,

- opracowanie intuicyjnego oprogramowania dla s¢dziow umozliwiajacego rzetelng
weryfikacj¢ I uwiarygodnienie automatycznej podpowiedzi systemu oraz jej ewentualng
korekte przed udostepnieniem wizualizacji miejsca upadku lotki kibicom i

zawodnikom.
Praca sktada si¢ z 5 rozdziatow.

Rozdziat 1 wprowadza czytelnika w tematyke problemu i zasadnicze uwarunkowania
zewngtrzne oraz istotne ograniczenia majgce wptyw na prowadzone badania. Przedstawiono w

nim wage problemu blednych decyzji s¢dziow oraz uzasadniono potrzebe opracowania



technologicznego narzedzia wspomagajgcego sedziow zawoddéw sportowych. Wskazano

glowne osiagniecie i cel prowadzonych badan.

W rozdziale 2 dokonano przegladu aktualnego stanu wiedzy i przedstawiono koncepcje i

metody wspomagania decyzji sedziowskich.
Rozdziat 3 prezentuje zasadnicze osiggnigcie 1 opisuje opracowang metode.

W rozdziale 4 opisano w jaki sposob zweryfikowano opracowang metode wraz z dyskusja

uzyskanych wynikow.
Podsumowanie i wnioski przedstawiono w rozdziale 5.

Slowa kluczowe: wizja komputerowa, sport, szybko poruszajace si¢ obiekty, detekcja obrazu,
segmentacja matych obiektow na obrazie, wspomaganie decyzji s¢dziow liniowych, §ledzenie

i modelowanie ruchu obiektow, analiza i interpretacja obrazow



Abstract

Badminton is the fastest sport in the world. A badminton shuttlecock can travel at initial speeds
in excess of 400 km/h [1, 2]. The current Guiness world record (registered on April 14™ 2023)
is 565 km/h [3] which is better by 72 km/h than a previous record from 2013 [4]. After the
impact it slows down sharply, but when it hits the ground the speed is so high that the line
judges often cannot tell if the shuttlecock was in or out. This leads to refereeing errors - about

20-24% of refereeing decisions are wrong [5, 6].

The research presented in this thesis was aimed at verifying whether it is possible to build a
commercial system that in real conditions can help referees of badminton competitions in

assessing the place of the shuttlecock fall — in or outside the court.

This thesis was prepared as part of the third edition of the implementation doctorate. The
purpose of the implementation doctorate, as defined by the Ministry of Science and Higher
Education, is “to solve an original scientific problem and a practical problem in such a way that
the resulting solution can be implemented”. Therefore, in addition to presenting scientific

problems and their solutions, this thesis also addresses the practical and business aspects.

A specific scientific achievement was implemented in the economic sphere - the comprehensive
support system developed together with the second doctoral student - Jarostaw Nowisz (multi-
camera measurement system, high-resolution time data streaming, online video analysis and
interpretation methods, suggested decisions supporting the work of referees) was verified in
practice during real sports competitions, in particular it was used in the Senior World
Championships in Katowice. This can be seen perfectly in the video recording of the
competition, which is available on youtube.com. Links to key moments of the broadcast

presenting the effect of the system are provided in references [11] and [12].
As part of the research work, the following issues were undertaken:

- Detection and tracking fast-moving objects.

- Badminton shuttlecock segmentation.

- Finding the frame in the video stream where the shuttlecock hit the ground.

- Determining the position of the badminton shuttlecock cork in relation to the reference
lines of the court and determining whether the shuttlecock was in or outside the playing

field at the moment of the bounce.



- Developing easy-to-use control software for referees that allows for verification of the

system's automatic decision.
The work consists of 5 chapters.

Chapter 1 introduces the reader to the subject of the problem and the main external conditions
and significant limitations influencing the conducted research. It presents the importance of the
problem of incorrect decisions of referees and justifies the need to develop a technological tool
supporting referees of sports competitions. The main achievement and the aim of the conducted
research are indicated.

Chapter 2 reviews the current state of knowledge and presents concepts and methods of

supporting referee decisions.
Chapter 3 presents the main achievement and describes the developed method.

Chapter 4 describes how the developed method was verified along with a discussion of the
obtained results.

A summary and conclusions are presented in Chapter 5.

Keywords: computer vision, sport analysis, fast-moving objects, image detection, object

segmentation
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1. Wprowadzenie - technologiczne wspomaganie decyzji
sedziowskich w sporcie

1.1. Motywacja

Zawodowy sport to ciezka praca, a sportowcy zarabiajg gldwnie podczas zawodow. Autor nie
zna dyscypliny sportowej, w ktorej nie byloby sedziow podejmujacych Kkluczowe dla
zawodnika decyzje. Jeden btedny werdykt sedziego moze zdecydowac o tym, czy zawodnik
wygra mecz i zagra w finale, czy tez odpadnie na etapic potfinatu. Przyktadowo finalista
tenisowego turnieju US Open 2024 otrzyma nagrode przynajmniej w wysokosci 1,8 min USD,
a potfinalista — 1 mIn. Mozna zaryzykowac¢ stwierdzenie, ze pomytka sedziego w kluczowym
momencie meczu potencjalnie moze ,,kosztowac” 800 tys. dolaréw. Chocby z tego powodu
systemy wspomagania decyzji sedziowskich za pomoca obliczeniowych metod analizy i
interpretacji biezacych zapiséw wideo — od rozstrzygania klasycznego problemu ,,boisko czy
aut”, przez precyzyjng detekcje spalonego w skoku w dal, po stwierdzenie kto jest pierwszy w

biegu na 100 metréw — sg kluczowe dla zawodnikow.

Zgodnie z raportem IMARC Group [13] globalny rynek analizy sportdéw byt wyceniony w
2022r. na 1.1 miliarda dolarow, z czego 35% dotyczyto analizy wideo. W publikacji A
Comprehensive Review of Computer Vision in Sports: Open Issues, Future Trends and
Research Directions [14] autorzy dokonali przegladu badan naukowych w dziedzinie analizy
wideo z zawodow sportowych w wiodacych czasopismach. W latach 2020-21 pojawito si¢ 77
publikacji (wzrost z 66 w latach 2018-19) poruszajacych ten temat. Najwiecej publikacji
dotyczylo pitki noznej — 26%, za$ badmintona — 4%.

Autor regularnie gra w badmintona i startuje w turniejach amatorskich i seniorskich. Biorac
udziat w zawodach niejednokrotnie nie zgadzat si¢ z decyzja s¢dziego, ale musiat ja uszanowac,
poniewaz nie bylo zadnego obiektywnego narzedzia pozwalajacego na zweryfikowanie
podjetej przez sedziego decyzji. Czasami podczas zawodow amatorskich, gdy nie ma sedziow,
to inni zawodnicy sedziuja nawzajem swoje mecze. Whbrew pozorom nie jest to proste i
niejednokrotnie, gdy zadaniem autora bylo s¢dziowanie meczu, nie mial pewnosci, czy byto
boisko, czy aut, a nawet zdarzaty sie sytuacje, gdy dwie osoby obserwujace lotke upadajacg na
kort nie mogty si¢ zgodzi¢, czy lotka upadta w polu, czy nie. Dlatego tez, wzorem innych
dyscyplin, takich jak siatkdéwka czy tenis, autor postanowit rozpocza¢ badania nad systemem
wspomagajacym decyzje s¢dziowskie — by unikng¢ subiektywnych ludzkich pomytek,

wynikajacych przede wszystkim z ograniczonych ludzkich zdolnosci percepcji ruchu
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upadajacej lotki. Mniejsza liczba publikacji naukowych dotyczacych badmintona niz, na
przyktad, pitki noznej czy tenisa spowodowana jest tym, ze nagrody pieni¢zne w badmintonie
sg duzo nizsze niz W wymienionych dyscyplinach. Najwigksze turnieje badmintona maja pulg
nagrod do 2 mln dolardw, a tenisowe nawet 75 mln. Warto nadmienic¢, ze w wielu sportach gra
si¢ pitkg (bedaca kulg), dzieki czemu ten sam model zachowania odbitej Iub rzuconej pitki
mozna zastosowa¢ W roznych konkurencjach. Niestety ze wzgledu na ksztalt lotki teoretyczne
modele majg ograniczong praktyczng skuteczno$é, poniewaz nie uwzgledniaja wszystkich
zmiennych. Na zachowanie lotki uderzanej z r6zng sitg za pomoca roznych technik ma wptyw
nie tylko niepowtarzalna jej konstrukcja, ale tez zmieniajace si¢ intensywnie w czasie jej
wlasciwosci (piora lotki ulegaja uszkodzeniu podczas gry) oraz uwarunkowania zewngtrzne
(temperatura i wilgotnos¢ powietrza zalezna od miejsca rozgrywania zawodow, wpltyw
klimatyzacji na tor lotu lotki etc.) W publikacjach [15, 16] autorzy stworzyli modele zachowan
lotki, ale nie uwzglednili wspomnianych uwarunkowan, poniewaz testowali swoje modele w
warunkach laboratoryjnych. Podjeta przez autora proba zastosowania tych modeli w warunkach
rzeczywistych okazata si¢ porazka. Zaobserwowane miejsce upadku lotki w stosunku do
wyznaczonego przez modele ze wspomnianych publikacji zgadzato si¢ tylko wtedy, gdy
testowanym uderzeniem byt dtugi serwis (lift) — czyli uderzenie do goéry na koniec kortu. W
badmintonie istnieje szereg réznych zagran, po ktérych lotka porusza si¢ po réznych
trajektoriach. Ponizej - [Rysunek 1] przedstawiono rozne typy uderzen lotki i ich typowe
trajektorie. W rzeczywistosci dwie trajektorie lotki uderzonej z taka sama predkoscia
poczatkowa 1 pod tym samym katem moga si¢ istotnie rdzni¢. Duze znaczenie ma to, Czy
zawodnik podczas uderzania lotki ja podciat, a jesli tak, to od ktorej strony, a nawet czy jest
leworeczny, czy praworgczny. Podcigcie ma istotny wplyw na trajektori¢, poniewaz zwigksza
lub zmniejsza ruch wirowy lotki (piora w lotce nachodza na siebie, wigc swobodnie puszczona
lotka wiruje zawsze w t¢ samg strong). Wstepne proby poprawy tych modeli wzgledem
praktycznych kryteriow interpretacyjnych (ocena poprawnosci zagran konczacych) nie

przyniosty spodziewanych efektow.
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Rysunek 1 Rozne typy uderzen i ich trajektorie:. (1) serve, (2) drop, (3) smash, (4) clear, (5) lift, (6) drive, (7) block, (8) net
kill, (9) net shot *

Z badan wlasnych wynikto, ze efektywniejsze, szczegolnie w kontek$cie wspomagania decyzji
sedziowskich, sa badania $ledzace ostatnig faze lotu lotki tuz nad kortem. Zdecydowano si¢
wigc na eksploracj¢ probleméw naukowych wiasciwie nieporuszanych nigdy wczesniej, tj.
szybka analizg i interpretacje wielu strumieni wideo z dobranej lokalnie przestrzeni obserwacji
upadajacej lotki. Wykorzystano przede wszystkim kryteria pragmatyczne (przepisy gry, formy
oceny sedziowskiej, zroznicowanie mozliwych interpretacji, realistyczne uwarunkowania
przestrzenno-czasowe zawodow, mozliwe fluktuacje infrastruktury teleinformatyczne;,
dyskusje problemow sedziowskich, doswiadczenia zawodnikéw etc.). System pomiarowy i
formy analizy doskonalono przez kilka lat z wykorzystaniem przede wszystkim kryteriow
pragmatycznych, uwzgledniajagcych np. koszty sprzetu, istniejagce ograniczenia w
mozliwo$ciach rozmieszenia kamer, przepustowosci kabli, mozliwosci zréwnoleglenia
obliczen czy poprawy rozdzielczosci dokonywanych online analiz, zaktocenia powodowane
ztym o$wietleniem, przemieszczaniem si¢ kibicow czy tez kamerzystow. Te dlugotrwate,
prowadzone w réznych realiach badania pozwolity uzyska¢ duza niezawodno$¢ systemu i
przede wszystkim jego uzyteczno$¢ w bardzo zréznicowanych warunkach realnych zawodow

badmintonowych.

Aktualnie na rynku istnieje jeden system komercyjny (Hawk-Eye, Sony)[17], ktéry wspomaga
sedziow badmintonowych. Niestety jest on bardzo drogi, w zwiazku z czym wykorzystuje si¢

go tylko na najwigkszych turniejach badmintonowych (takich z pulg nagrod powyzej 500 tys.

1 Zrédto rysunku: https://www.researchgate.net/figure/1llustration-of-different-stroke-types-The-trajectories-of-1-
serve-2-drop-3_fig2_360647085. Autor: Ning Ding
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USD), ktorych jest kilkanascie w roku. Firma Sony nie udost¢pnia publicznie wynikéw swoich

badan.

Siegajac po naukowe narzedzia i koncepcje, autor myslal przede wszystkim o praktycznych
kryteriach ich weryfikacji. Wybierat takie rozwigzania, ktore nie b¢dg wymagaty bardzo

drogiego sprzetu i duzych kosztow montazu czy tez transportu.

1.2. Opis problemu

KATOWICE

for @ change

Rysunek 2 Wizualizacja miejsca upadku lotki wygenerowana przez opracowany system zaprezentowana podczas turnieju w
Katowicach 2

Podczas meczu badmintona s¢dziowie liniowi, siedzacy na wprost linii ograniczajacych pole
gry, obserwuja linie i sygnalizujg gtdéwnemu sedziemu, czy lotka upadta w polu gry, czy poza
nim. W zaleznosci od rodzaju uderzenia predkosé¢ lotki tuz przed odbiciem o ziemi¢ moze
wyniesc:
e 29,8 m/s dla uderzen smash — uderzonych z predkoscia poczatkowa 85 m/s po dystansie
5sm,
e 11,8m/s dla uderzen smash — uderzonych z predko$cia poczatkowa 85 m/s po dystansie
9m,

e 6,7 m/s dla uderzen high clear. [18, 19] (dla tego rodzaju uderzen lotka przy podtozu
osigga predkos¢ greniczng, bez wzgledu na predko$¢ poczatkowa uderzenia)

Wsrod graczy elity najczesciej uderzeniem konczacym jest smash — 54% [18]. Przy takich
uderzeniach, dla ktorych lotka upada bardzo blisko linii, s¢dziowie maja duzy problem z
ocenieniem, czy byt aut, czy nie. Jedna btedna decyzja sedziego moze decydowac o wyniku
meczu. Dzigki wspomagajacym systemom komputerowym rezultat meczu czgsciej moze by¢
sprawiedliwy. Warto nadmieni¢, ze zmeczenie sedziego wptywa na jego koncentracje i rOwniez
moze powodowa¢ btedng ocene i przyczynia¢ si¢ do pomytek. Nalezy tez zaznaczy¢, ze

pojedyncze mrugniecie okiem trwa od 15 do 400 m/s i szacuje sie, ze kazdy z nas mruga co

2 7r6dto wiasne
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okoto 6-20 razy na minut¢ [20] , wiec sedzia mozne po prostu nie dostrzec, w ktorym miejscu

odbita si¢ lotka.

Aby rozwigza¢ przedstawiony problem, nalezy rozwigzac¢ szereg probleméw badawczych oraz

zagadnien praktycznych, ktore przedstawiono w niniejszej rozprawie.

1. Dobodr i testy sprzgtu, w tym wybor kamer, jednostek obliczeniowych, peryferiow.

2. Wyznaczenie mozliwie optymalnego miejsca montazu kamer i pozostatego sprz¢tu na
konkretnej hali.

Kalibracja kamer z wykorzystaniem przeno$nego stanowiska kalibracyjnego.
Wyznaczenie maski pola gry dla obrazu z kazdej kamery.

Detekcja i sledzenie lotki w strumieniu wideo.

o a ~ w

Wyznaczenie kluczowej klatki wideo —zarejestrowanej najblizej momentu upadku

lotki na kort.

7. Precyzyjne wyznaczenie pozycji korka lotki i miejsca odbicia lotki od podloza w
stosunku do referencyjnych linii kortu.

8. Weryfikacja przez sedziego technicznego automatycznej podpowiedzi systemu.

9. Prezentacja kibicom i zawodnikom animacji wizualizujacej miejsce upadku lotki i

decyzje¢ in/out.

Nad opracowaniem kompletnego systemu, ktorego efektem koncowym jest komputerowa
animacja wizualizujgca miejsce upadku lotki [Rysunek 2], [21] wraz z informacja, czy bylo
pole, czy aut, autor pracowat wraz z drugim doktorantem — Jarostawem Nowiszem. W
niniejszej rozprawie opisano szczegoétowo stworzone algorytmy i skladowe systemu oraz
badania, ktore autor prowadzit samodzielnie — punkty 5,6,7,8 z powyzszej listy. O pozostatych
sktadowych, ktore byly realizowane samodzielnie przez J. Nowisza lub byly realizowane
wspoélnie, wspomniano jedynie ogodlnie, w taki sposob, aby czytelnik mial obraz catosci

rozwiazania.

Aby powstate rozwigzanie moglo zosta¢ wdrozone komercyjnie, to musi ono spetiac

nastgpujace wymagania rynkowe:

e doktadno$¢ systemu powinna by¢ tak wysoka, jak to tylko mozliwe, przy czym
satysfakcjonujacym rynek wynikiem jest doktadno$¢ wyznaczenia miejsca upadku lotki
w stosunku do linii ograniczajacych pole gry z doktadnos$cig ponizej 13 mm (potowa
$rednicy korka lotki do badmintona okreslona przepisami [22]);

e sSystem powinien dziala¢ w czasie rzeczywistym,
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e zc wzgledu na wymagania $wiatowej federacji badmintona (BWF) system powinien
zapewnia¢ mozliwos¢ weryfikacji decyzji systemu przez sedziego technicznego na
podstawie zapisu wideo. Procedura weryfikacyjna powinna by¢ tak przygotowana, aby
nie trwata dtuzej niz 25 sekund,

e Czas potrzebny na instalacje sprzetu W obiekcie, w ktérym odbywajg si¢ mecze, nie
powinien przekroczy¢ 4 godzin na jeden kort przy udziale dwoch osob;

e Sprzet wykorzystywany przez system powinien zajmowa¢ mozliwie mato miejsca.
Idealnie, jesli bedzie mozliwe wystanie sprzgtu jedng przesytka paletowa (Paleta EURO
0 wymiarach 120 x 80cm);

e koszt urzadzen i peryferiow koniecznych do sprawnego dziatania systemu powinien by¢

mozliwie niski w stosunku do merytorycznych wymagan uzytkowych.

W rozprawie wspomniano réwniez 0 wyzwaniach operacyjnych i technicznych, a takze
ograniczeniach, ktore nie sg bez znaczenia przy opracowaniu uzytecznego i mozliwego do

wdrozenia na rynku rozwiazania. Sa to w szczegolnosci:

e Ograniczenia czasowe zwigzane z instalacja systemu w hali,

e Ograniczenia transportowe zwigzane z wielkoscia i wagg sprzetu,

e Ograniczenia zwigzane ze $rodowiskiem zewngtrznym — o$wietlenie w hali, brak
miejsca pomiedzy kortami,

e ograniczenia finansowe — wybdr odpowiedniego sprzetu (kamery, okablowanie,
komputery i peryferia),

e integracja z systemem live® scoring i live streaming®.

1.3. Cel badan i glowne osiagniecie

Celem badan jest rozwigzanie realnego problemu wspomagania decyzji s¢dziow liniowych
dotyczacych oceny skuteczno$ci poszczegélnych zagran konczacych w czasie meczoéw
badmintona przez weryfikacje miejsca upadku lotki. Glownym osiggni¢ciem autora jest
opracowanie skutecznej metody weryfikacji realnego miejsca upadku lotki wzgledem linii
referencyjnych, stuzacej wspomaganiu decyzji sedziowskiej(w boisku lub aut), ktora znalazta
zastosowanie w kompleksowym systemie wspomagania kluczowych decyzji sedziowskich

dotyczacych zawodow sportowych gry w badmintona. Eksperymentalnie potwierdzono realne

% Live scoring system. Oprogramowanie prezentujace aktualny wynik meczu na elektronicznej tablicy wynikow
oraz podczas telewizyjnej transmisji wideo

4 Live streaming system. Oprogramowanie stuzgce do transmisji wideo w czasie rzeczywistym w Internecie. W
szczegolnosci w serwisach takich jak youtube czy facebook
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zmniejszenie liczby pomytek sedziowskich o 20%, co uznano za znaczacg korzys¢ uzytkowa o
istotnych walorach komercyjnych.

Nowatorstwo i oryginalno$¢ zaproponowanego Systemu wyrazaja si¢ przede wszystkim w
kompleksowos$ci realizacji — od projektu i realizacji systemu akwizycji, przez wyniki
konkretnych analiz i interpretacji obliczeniowych, az po konkretng forme wspomagania decyzji

sedziowskich w realiach prowadzonych zawodow sportowych.

W ramach wykonanych prac badawczo-wdrozeniowych zrealizowano nast¢pujace gtowne cele

naukowe i aplikacyjne:

e Opracowanie skutecznej metody lokalizacji miejsca upadku lotki wzgledem pola gry na
podstawie  wielostrumieniowego zapisu wideo, pozyskanego za pomocg
zoptymalizowanej metody pomiarowej (zapis w okresSlonej geometrii przestrzennej
dostosowanej adaptacyjnie do réznorodnych uwarunkowan realnych kortow i hal
sportowych) bedacej w zgodzie z odpowiednimi przepisami [22].

e Eksperymentalna weryfikacja skutecznos$ci i przydatnosci opracowanego systemu
wspomagania w zréznicowanych warunkach rzeczywistych.

e Opracowanie stabilnego oprogramowania dziatajacego w czasie rzeczywistym, ktore w

wyniku prezentuje miejsce upadku lotki w stosunku do linii kortu.

Realizacja tych dziatan skutkowata opracowaniem wiarygodnej metody mozliwie precyzyjnej
detekcji miejsca upadku lotki na podstawie analizy obrazow z kamer ustawionych w okreslonej

konfiguracji przy korcie do gry w badmintona. Doktadno$¢ detekcji jest wystarczajaca do:

a) skutecznego wspomagania decyzji sedziowskich w przypadkach watpliwych lub
krytycznych,

b) wiarygodnego potwierdzania autu lub jego braku w przypadkach klarownych na
zasadzie kontroli lub korekcji pomytek ludzkich,

c) automatycznego obliczania statystyk z poprawnosci pierwotnych decyzji s¢dziow

liniowych.

1.4. Istotne uwarunkowania prowadzonych badan

Ponizej zostaly opisane zewnetrzne ograniczenia majace wptyw na badania i podjete przez
autora kluczowe decyzje. Opisano rowniez, w sposob ogdlny inne problemy, ktére musiaty
zosta¢ rozwigzane, aby opracowaé kompleksowe rozwigzanie komercyjne, a ktore wykraczaja

poza badania autora opisane w niniejszej rozprawie.
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Uklad pomiarowy uwzgledniajacy ograniczone mozliwosci obserwacyjne

Przed przystgpieniem do zbierania danych konieczne bylo wybranie odpowiedniego sprzetu.
Majac na uwadze komercjalizacje tworzonego rozwigzania, autor przy wyborze sprzetu
pomiarowego i obliczeniowego, kierowat si¢ rowniez aspektem ekonomicznym. W zwigzku z
tym zaprojektowano taki uktad pomiarowy, ktory zapewniat mozliwie wysoka doktadno$¢ przy

zatozonych ograniczeniach finansowych.

Doktadnos¢ systemu w duzym stopniu zalezy od parametrow kamery rejestrujacej obraz —
glownie rozdzielczo$ci przestrzennej oraz liczby klatek na sekunde (FPS ang. frames per
second). Te dwa parametry determinujg ilo$¢ danych, ktore kamera przesyta poprzez interfejs
komunikacyjny. Wspomniane parametry kamery sa tez najwazniejsze z punktu widzenia
prowadzonych przez autora badan. Im wyzsza liczba klatek na sekunde tym mniejsze rozmycie
poruszajacej sie lotki oraz precyzyjniej mozna wyznaczy¢ moment odbicia lotki od podtoza. Z
eksperymentow przeprowadzonych przez autora wynika, ze aby osiggnaé zadowalajace
rezultaty nalezy rejestrowac wideo z predkoscig 150 klatek na sekunde Iub wyzszg. Natomiast
bardziej szczegdtowa tres¢ obrazow pozwala na precyzyjniejsze wyznaczenie pozycji korka

lotki w stosunku do referencyjnych linii kortu.

Dzisiejsze kamery oferuja rozdzielczo$¢ 2832 px x 2840 px przy 190 FPS z interfejsem
CoaXPress 2.0 (2x CXP-12). Producenci sensorow oferuja sensory nawet o wyzszych
rozdzielczo$ciach, ale ze wzglgdu na ograniczenia przepustowosci interfejsu komunikacyjnego
nie jest mozliwe skonstruowanie kamery o maksymalnie wysokiej rozdzielczosci oferowanej

przez producentow sensorow i maksymalnie mozliwej liczbie klatek na sekunde.

Istnieja cztery gtowne interfejsy [Tabela 1]: GigE, CoaXPress, USB i CameraLink do
przesytania danych z kamer. Jakakolwiek komunikacja z kamerami za pomocg WiFi lub inne;j
technologii radiowej nie jest mozliwa w zattoczonych 1 podatnych na zaktdcenia miejscach,

takich jak hale sportowe, dlatego jedyna opcja sg kable.

Standard interfejsu Maksymalna dtugosc kabla (m) Przepustowos¢ (Gbps)
CoaXPress 2.0 35-100 3.125-12.5
Cameralink 5-10 2 (4 przy uzyciu 2 kabli)
USB 3.0 3 5
GigE 100 1-10

Tabela 1 Gléwne rodzaje interfejséw kamer

Autor do rejestracji wideo uzyt szaroodcieniowych kamer o rozdzielczosci 800 x 600 pikseli,
pracujacych z maksymalng predkoscig 240 klatek na sekunde. Ze wzgledu na spore odlegtosci

kamer od komputerow przetwarzajacych z nich obraz (w zalezno$ci od warunkéw panujacych
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w hali siegajacych nawet kilkudziesieciu metrow) wybrano kamery z interfejsem GigE.
Dodatkowo dzigki mozliwosci zasilania kamer poprzez kabel ethernetowy (Power Over
Ethernet) ogranicza si¢ do jednego przewodu liczbe przewodow podigczonych do jednej

kamery.

Kiedy kilka lat temu autor zaczynat prace nad systemem, rynek nie oferowat w sprz¢tu o duzo
lepszych parametrach. Dzisiaj alternatywg dla wybranych wtedy kamer bylyby kamery z
interfejsem CoaXPress. Warto jednak nadmieni¢, ze uktad pomiarowy wykorzystujgcy kamery
z interfejsem CoaXPress bylby kilkukrotnie drozszy. Duzo drozsze sg kable oraz karty do

akwizycji obrazu instalowane w komputerach.

Wspomniana rozdzielczo$¢ okazata si¢ wystarczajaca, aby osiagna¢ zadowalajacg doktadnosé
lokalizacji spadajacej lotki przy umiarkowanych wymaganiach dotyczacych ztozonosci

obliczeniowej.

[lo$¢ danych przesylanych z kamer 1 wydajnos¢ algorytméw wykrywajacych i sledzacych lotke
okreslaja niezbedng moc obliczeniowa i liczb¢ komputerow. W przypadku wyzszych
rozdzielczo$ci mamy wigcej danych, co determinuje nam wyzsza liczbe komputerdw

potrzebnych do ich przetworzenia (a co za tym idzie i podnosi koszty).

Jesli chodzi o ustawienie kamer w stosunku do kortu, z jakimi mozna si¢ spotkac, to stosuje si¢

glowne 3 strategie, ktore wraz z zaletami i wadami przedstawiono w tabeli [ Tabela 2].

Sposdb rozmieszczenia
kamer

Zalety

Wady

Wiele kamer nad kortem.
Kazda kamera obejmuje w
swoim polu widzenia caty
kort.

Mozliwe Sledzenie petnej
trajektorii lotki w 3D.
Wyznaczenie momentu
odbicia lotki o podtoze
wprost ze wspdtrzednych
3D lotki.

Mozliwe zbieranie
statystyk z przebiegu gry
takich jak rodzaj uderzen
wygrywajacych, predkosc
czy tez kierunek
uderzenia.

Woystarczy 6-9 kamer.

Konieczna precyzyjna
synchronizacja kamer, kalibracja i
wyznaczenie wzajemnej pozycji
kamer w ustalonym ukfadzie
odniesienia.

Ktopotliwy i dtugotrwaty montaz,
czesto wymagajacy podnosnikéw.
Potrzeba setek metréw kabili.
Moze by¢ konieczny montaz w
miejscach dostepnych dla
publicznosci (np. na trybunach)
W przypadku awarii np.:
odfaczenia sie kabla od kamery,
naprawa usterki moze by¢ bardzo
problematyczna.

Mniej precyzyjne wyznaczenie
korka lotki (lotka jest stosunkowo
mata na obrazie).
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Kamery ustawione wokét
kortu. Kazda z kamer
obserwuje okreslone linie
kortu

Szybki i mato ktopotliwy
montaz. Mniej kabli.

W przypadku awarii mato
problematyczny serwis.
Nie jest konieczna
synchronizacja kamer.
Mozna pomingé
procedure kalibracji
kamer.

Duza lotka na obrazie
pozwala na
precyzyjniejsze
wyznaczenie pozycji
korka.

Aby byty widoczne wszystkie linie
potrzeba minimum 10 kamer.
Zalecane 14.

Nie jest mozliwa rejestracja petnej
trajektorii lotki w zwigzku z czym
nie jest mozliwe zebranie wielu
interesujgcych statystyk
dotyczacych przebiegu gry.
Bardziej skomplikowana
procedura wyznaczenia momentu
odbicia lotki o podtoze.

Kamery nad kortem i
wokot kortu

Mozliwe Sledzenie petnej
trajektorii lotki w 3D.
Precyzyjne wyznaczenie
momentu odbicia lotki o
podtoze.

Mozliwe zbieranie
statystyk z przebiegu gry
takich jak rodzaj uderzen,
predkos¢ czy tez kierunek
uderzenia.

Duza lotka na obrazie z
kamer przy korcie
pozwala na
precyzyjniejsze
wyznaczenie pozycji
korka.

Uszkodzenie jednej
kamery nie musi
powodowad, ze system
przestaje dziatac.

Potrzeba najwiekszej liczby
kamer. Przynajmniej 20. Oznacza
tez to najwyzszy koszt takiego
rozwigzania.

Konieczna precyzyjna
synchronizacja kamer, kalibracja i
wyznaczenie wzajemnej pozycji
kamer w ustalonym uktadzie
odniesienia.

Ktopotliwy i dtugotrwaty montaz,
czesto wymagajacy podnosnikéw.
Potrzeba setek metrow kabli, a
moze nawet kilometréw.

Moze by¢ konieczny montaz w
miejscach dostepnych dla
publicznosci (np. na trybunach).
W przypadku awarii np.:
odtaczenia sie kabla od kamery
znajdujacej sie nad kortem,
naprawa usterki moze by¢ bardzo
problematyczna.

Tabela 2 Mozliwe strategie rozmieszczenia kamer podczas zawodoéw wraz gtéwnymi z zaletami i wadami

Autor zdecydowat si¢ na umieszczenie 14 kamer wokot kortu gtdéwnie z powodu mozliwosci

szybkiego montazu. Sposdb rozmieszczenia kamer zaprezentowano na rysunku [Rysunek 3].
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%" YONEX

Rysunek 3 Schemat i zdjecie przedstawiajgce sposob rozmieszczenia 14 kamer wokol kortu

Bardzo czesto wokot kortow ustawione sg banery reklamowe. Determinuje to lokalizacj¢ (za
banerami) i wysoko$¢ na jakiej musza by¢ umieszczone kamery (nad banerem). Wysoko$¢
banerow jest okreslona przepisami [23] i nie moze by¢ zadnych elementéw stojacych w
odlegtosci mniejszej niz 1.5 od linii kortu — w praktyce nic nie mozna umiesci¢ przed banerami

reklamowymi. Z tego tez powodu autor nie testowal ustawienia kamer tuz nad podtozem.
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Wspomniane zalety zastosowanego przez autora uktadu pomiarowego powodujg, ze bardzo
szybko mozna zmieni¢ ustawienie kamer. Podczas duzych turniejow, czgsto na mecze finatowe,
pozostawia si¢ tylko jeden kort gldéwny, wokot ktorego jest wigcej pustej przestrzeni niz
podczas wczesniejszej fazy turnieju, patrz [Rysunek 4, Rysunek 5]. Zmiana ustawien kortow
czesto jest dokonywana w nocy pomigdzy ostatnimi dniami turniejowymi. Oznacza to, ze po
roztozeniu mat, na ktorych graja zawodnicy, ma si¢ tylko kilka godzin na instalacj¢ 1 testy

systemu w nowych warunkach przestrzennych.

a7 YONEX

o7 YONEX

-3

Rysunek 4 Przyktadowe rozmieszczenie kortow we wezesnej fazie turnieju. Mistrzostwa swiata senioréw w Katowicach

Rysunek 5 Pozostawiony jeden kort podczas fazy finatowej (Igrzyska olimpijskie, Londyn 2012, Zrédio Wikipedia)
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Nie bez znaczenia jest tez i1los¢ sprzetu, ktory musi zosta¢ przetransportowany, a nastgpnie
umieszczony w hali. Im mniej potrzeba sprzetu (kable, komputery, peryferia) tym lepiej.
Mniejsze gabaryty i waga sprzetu oznaczaja mniejsze koszty transportu. W naszym systemie
do przetwarzania danych uzywa si¢ 7 komputerow klasy PC. Kazdy komputer przetwarza dane

Z dwodch kamer.

Dynamiczne warunki pomiarowe
Roézne obiekty sportowe majg rozne oswietlenie. Aby nagrywac¢ wideo z predkoscig ponad 150
FPS, o$wietlenie musi by¢ wystarczajaco silne. Problem ten nie wystepuje w tenisie (z

wylaczeniem meczow wieczornych), gdzie zwykle mamy $wiatto dzienne.

Waznym krokiem, ktory jest wykonywany podczas montazu kamer w hali jest dobranie
mozliwie najkrotszego, w zastanych warunkach o$wietleniowych, czasu naswietlania sensora
(w praktyce FPS kamery). Ocena, czy przy ustalonym czasie naswietlania obraz jest dobrze
naswietlony dokonywana jest na podstawie analizy histogramu jasno$ci pikseli zgodnie z

metoda zaproponowang przez Kuldeep Singh [24].

Nawet w hali o najgorszych warunkach o$§wietleniowych udalo si¢ zarejestrowaé odpowiednio
naswietlone obrazy z predkoscia 150 klatek na sekunde, ale tylko w jednym miejscu

zainstalowano wystarczajaco mocne §wiatla, aby nagra¢ wideo z predkoscig 200 FPS.

Opracowany przez autora algorytm detekcji lotki do badmintona wykorzystuje ramki
réznicowe. Aby dziatal on poprawnie, to wymagane jest rtOwnomierne w czasie o$wietlenie
sceny. Niestety prad zmienny, ktorym zasilane sa lampy w halach powoduje ich migotanie (z
czestotliwoscig 50 Hz). Na dziewig¢ odwiedzonych obiektow, w ktorych organizowane sg
turnieje badmintona w Polsce, tylko jeden miat zainstalowane o$wietlenie bez migotania. Na
rysunku [Rysunek 6] przedstawiono przyktadowe ramki roznicowe wygenerowane dla

statycznej sceny przy migoczacym os$wietleniu.
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Rysunek 6 Przyktadowe ramki réznicowe wygenerowane ze strumienia wideo zarejestrowanego z predkoscig 190 klatek na
sekunde w hali wyposazonej w migoczqce oswietlenie

Konieczne bylo zatem opracowanie efektywnej metody kompensujacej ten efekt. Autor
skorzystat z wyjatkowo efektywnej metody kompensujacej efekt nierdwnomiernego
o$wietlenia sceny spowodowany migotaniem o$wietlenia opracowanej przez pana Nowisza.
Zostata ona szczegdtowo opisana w publikacji, ktorej autor jest wspotautorem - ,,A. Realtime
flicker removal for fast video streaming and detection of moving objects” [25]. Metoda polega
na adaptacyjnym generowaniu masek kompensujacych efekt migotania na podstawie analizy
zmiennosci jasnosci pikseli w czasie. Dla stacjonarnych kamer obliczany jest poziom
podobienstwa kazdego piksela do tego samego piksela z poprzedniej klatki. Jesli piksel zmienit
si¢ z powodu lokalnego ruchu w scenie, poziom podobienstwa bedzie niski, w przeciwnym
razie wysoki. Jesli poziomy podobienstwa sg wyzsze od adaptacyjnie wyznaczonej wartosci
progowej, to roznice w jasnosci pomiedzy takimi pikselami wykorzystuje si¢ do utworzenia
maski kompensujacej efekt migotania. Opracowana metoda jest 250-300 razy szybsza niz

znane na rynku komercyjne rozwigzania takie jak DeFlicker [26] i FlickerFree [27].

Wyznaczenie maski pola gry dla obrazu z kazdej kamery
W swojej pracy badawczej autor nie zajmowat si¢ automatycznym wyznaczaniem pola gry. Dla
kazdej kamery maska pola, gry byta wyznaczana rgcznie. Jednakze, automatyczne wyznaczenie

pola gry jest korzystne z dwoch powodow:

e Jest szybsze niz Wyznaczane przez operatora.
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e W przypadku delikatnego poruszenia kamery (np. w wyniku drgan podtoza) maska pola

gry moze by¢ automatycznie skorygowana.

Ten problem byt badany doktadniej przez pana Nowisza, a rezultaty jego badan zostaty
opublikowane w naszym wspdolnym artykule [6]. Metoda opracowana przez pana Nowisza
polega na rozpoznaniu fragmentu kortu przez sie¢ neuronowg (réozne kamery widzg rozne
fragmenty kortu), a nastepnie na znalezieniu linii odpowiadajacych modelowi kortu wewnatrz
maski wygenerowanej przez sie¢ neuronowg. Ograniczenie obszaru, w ktorym szukane sg linie
tradycyjnymi metodami wizji komputerowej, znaczagco zmniejsza liczbe analizowanych linii i

pozwala automatycznie wybrac, te ktore sg liniami kortu.

Prezentacja animacji wizualizujacej miejsce upadku lotki i decyzje in/out

Wynik z systemu challenge® jest prezentowany jako animacja komputerowa pokazujaca
miejsce odbicia pitki lub lotki. Taki sposob prezentacji ma jedng podstawowa zalete.
Zawodnicy i kibice nie maja watpliwosci czy byto pole czy aut - nawet jesli decyzja systemu
jest btedna (nie ma rozwigzan w 100% skutecznych). Autor zacheca czytelnika to obejrzenia
na youtube dwoch fragmentow meczéw badmintona podczas ktorych wynik z opracowanego
systemu byl prezentowany publiczno$ci [11] oraz telewidzom [12]. Na zdjeciach ponizej,

zaprezentowano kluczowe momenty z tych dwoch filmow.

® Definicja podana w Stowniczek poje¢ punkt 1 na stronie 93
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) 2:42:18/4:21:53

Rysunek 11 Animacja lecgcej lotki w kierunku linii koricowej prezentowana widzom podczas transmisji telewizyjnej (z innego
meczu niz na wezesniejszych zdjeciach)

4

Rysunek 12 Prezentacja telewizyjna lokalizacji miejsca upadku lotki w stosunku do linii (z prawej strony widoczne
wjezdzajqce logo turnieju, ktore pojawia si¢ pomigdzy animacjq z systemu challenge, a transmisjq wideo z kamer
telewizyjnych.
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2. Powigzane prace i stan wiedzy

2.1. Sledzenie i detekcja obiektow

Sledzenie obiektow w sekwencji wideo jest jednym z glownych tematow widzenia
komputerowego. Okreslenie zachowan (kluczowych cech) i dynamiki interesujacego nas
obiektu jest niezbedne w przypadku kazdego problemu $ledzenia obicktow. Sledzenie matych,
szybko poruszajacych si¢ obiektow, takich jak lotka do badmintona (o zmieniajagcym si¢
ksztalcie i nieprzewidywalnym, nie dajacym si¢ opisa¢ formalnie torze ruchu), jest dos¢
specyficznym zagadnieniem $ledzenia obiektow. Nie wszystkie metody, ktore sprawdzajg sie
podczas $ledzenia wigkszych obiektow takich jak ludzie, zwierzeta, pojazdy mozna z
powodzeniem zastosowaé do $ledzenia lotki lub pitki [28]. Nie oznacza to, ze przedstawiajac

aktualny stan wiedzy nie warto wspomnie¢ o uznanych metodach $ledzenia obiektow.

W zaleznos$ci od badanego problemu, $ledzenie obiektow mozna podzieli¢ na dwie grupy:
sledzenie pojedynczego obiektu (single object tracking) i $ledzenie wielu obiektow (multi
object tracking). W sporcie przyktadem §ledzenia pojedynczego obiektu moze by¢ $ledzenie

pitki, a wielu obiektow sledzenie pitkarzy podczas meczu pitki nozne;.

W ogdlnosci algorytmy, $ledzace obiekt/obiekty mozna podzieli¢ tez ze wzglgdu na metody w

nich stosowane:
1. Zunifikowane metody Sledzenia i wykrywania.

Tego typu metody wykonujg proces $ledzenia i detekcji razem bez odrebnego detektora.
Najczgsciej te metody wymagaja recznej inicjalizacji 1 maja statg liczba obiektow w
poczatkowej klatce. Nastepnie, obiekty te sg lokalizowane i §ledzone w kolejnych klatkach

wideo.
1.1. Metody bazujace na filtrach.

Do tej kategorii mozna zakwalifikowa¢ przede wszystkim metody wykorzystujace filtr
Kalmana [29] i filtry czgsteczkowe [30], czy tez metody bazujace na $ledzeniu jadra
(Kernel Tracking) takie jak na przyktad KFC [31]. Wiecej informacji dotyczacych tych

metod znajduje si¢ w tabeli [Tabela 3].
1.2. Metody bazujace na wyszukiwaniu.

Metody bazujace na wyszukiwaniu probuja odkry¢ najlepszy slad poruszajacego sie

obiektu poprzez rozlegle przeszukiwanie, ze szczegdlnym naciskiem na $ledzenie
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malych obiektow. Wsrod takich metod mozna wskaza¢ metod¢ z wykorzystaniem
wielokrotnych hipotez - Multiple Hypothesis Testing (MHT) zaproponowang przez
Blosteina i innych [32], ktora na podstawie okreslonej sekwencji pomiaréw wyznacza
prawdopodobienstwo, ze to wlasnie szukany obiekt ja wywotal. Ta metoda dziata przy
zatozeniu, ze warto$ci intensywnosci tta 1 szumu sg nizsze niz $rednia intensywnos¢
$ledzonego obiektu. Metoda wigze ze sobg $ciezki ruchu obiektow i dane obserwacyjne
na przestrzeni kilku ramek tworzac wiele hipotez sledzenia. Hipotezy te sa tworzone i
utrzymywane w ramach dynamicznie rosnacego zbioru mozliwych $ciezek obiektow,
ale nie wszystkie z nich sg rownie prawdopodobne. MHT uzywa roéznych kryteriow
oceny (np. prawdopodobienstwa Bayesa lub oceny dopasowania na podstawie filtru
Kalmana) do przypisania prawdopodobienstw poszczegdlnym hipotezom. Z czasem
niektore $ciezki moga by¢ odrzucane, poniewaz staja si¢ mato prawdopodobne, a inne
moga zyskiwaé na pewnosci. Niestety ta metoda napotyka wyzwania podczas $ledzenia
szybko poruszajacych si¢ obiektow, poniewaz obszar wyszukiwania ro$nie
wyktadniczo. Zaletg tej metody jest mozliwos$¢ rozpoczynania §ledzenia dla nowych

obiektéw pojawiajacych sie w kadrze 1 konczenia dla tych, ktére z kadru znikngty.
2. Metody sledzenia po detekcji (Track by detection)

Pierwszg fazg tej metody jest lokalizacja sledzonych obiektow w pierwszej klatce.
Kolejnym etapem jest modelowanie wygladu §ledzonego obiektu. Obiekt moze ulec
wizualnej transformacji z powodu zmiennych warunkéw oswietlenia, rozmycia ruchu,
szumu obrazu, zmiany rozmiaru (gdy zbliza, lub oddala si¢ od kamery), czy tez z powodu
rotacji. Ten etap ma na celu uchwycenie réoznych cech i transformacji w celu poprawy
niezawodnosci modelu. Obejmuje on konstruowanie opisOw obiektow 1 modeli

matematycznych w celu identyfikacji obiektow o zmiennym wygladzie.

Przyktadowo, lotka do badmintona moze bardzo r6znie wygladac¢ [Rysunek 13].
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Rysunek 13 Przykiadowy widok lotki (a) w trakcie lotu, (b) w momencie odbicia i (c) po odbiciu

Waznym etapem jest oszacowanie modelu ruchu. Taki model pozwala przewidzie¢
potozenie obiektu na podstawie danych z poprzedniej/poprzednich klatek. Oszacowanie
ruchu pozwala na okreslenie potozenia obiektu w nastepnej, przysziej klatce, a co za tym
idzie ustaleniem wspotrzednych obiektu i przewidywanego regionu obrazu, w ktorym z

duzym prawdopodobienstwem moze si¢ znajdowac sledzony obiekt.

Metody z tej grupy dobrze radzg sobie z sytuacjami, gdy pojawia si¢ nowy obiekt w scenie.
Sledzenie po detekcji jest najbardziej popularng metoda, a wigkszo$¢ badan miesci sie w tej
kategorii. Nalezy jednak pamigta¢, ze skutecznos¢ tych metod w duzej mierze zalezy od
doktadnosci uzytego detektora. Wielu naukowcoéw zajmujacych sie $ledzeniem obiektow w

zapisach wideo z zawodow sportowych uzywa jako detektora sieci YOLO [10, 48, 49, 50].
2.1. Metody bazujace na usuwaniu tta

Metody wykorzystujace ramki roznicowe i odejmowanie tta sg popularne ze wzgledu
na swoja prostote i wysoka wydajno$¢ oraz to, ze dobrze sobie radza w przypadku

szybko poruszajacych si¢ obiektow. Szczegdlnie czgsto korzysta sie z tych metod w
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aplikacjach czasu rzeczywistego. Na przyktad w publikacji [33] autorzy generuja ramki
réznicowe z dwoch kolejnych. Nastepnie wykrywaja i $ledzg pitke tenisowa oraz graczy

na podstawie rozmiaru konturéw na ramkach réznicowych.

Zhu i inni [34] w celu wykrywania ruchomych obiektéw (dronow) generujg cztery
obrazy. Roznicowy obraz nr 1 - O(1) generowany na podstawie réznicy klatek N i N+1,
obraz nr 2 - O(2), ktéry jest obrazem réznicowym pomig¢dzy klatkg N+1 i N+2. Obraz
O(3) generowany poprzez wykonanie logiczniej operacji AND na obrazie O(1) i O(2).
Czwarty obraz O(4) uzyskiwany jest poprzez operacje XOR pomiedzy O(2) i O(3).
Ostatecznie obraz detekcji jest uzyskiwany poprzez wykonanie logicznej operacji AND
na obrazach O(1) i O(4). Pozostaly na obrazie szum jest usuwany poprzez operacje¢

erozji® (ang. erode).

W swojej pracy Yin, Q i pozostali [35] do detekcji poruszajacych si¢ obiektow na
filmach satelitarnych uzywaja akumulacyjnych ramek ro6znicowych, a nastepnie za
pomocg filtru trajektorii ruchu usuwaja fatszywych kandydatow - takich, ktorych

trajektorie nie sg zgodne modelem ruchu §ledzonych obiektow.

Natomiast Zhou, Y. i pozostali w swojej pracy [36] wskazuja na wydajne i
nienadzorowane podejscie z wykorzystaniem konwolucyjnych sieci neuronowych.
Stosuja metodg usuwania tlta w obrazowaniu ruchu szerokiego obszaru (WAMI). W
pierwszym kroku dzigki usunigciu tta wyodrebnia si¢ kandydatow o niskim kontrascie.
Kolejnym etapem jest usunigcie falszywych kandydatow poprzez wytrenowang

konwolucyjng sie¢ neuronowa uwzgledniajaca dane czasowe 1 przestrzenne.

Wykorzystujac jako detektor sie¢ Faster R-CNN [37] Aguilar, C. i inni [38]
zaproponowali metode S$ledzenia wielu obiektow na nagraniach  wideo
zarejestrowanych przez satelity, ktora na wejsciu otrzymuje ramke rdznicowa

wygenerowang na podstawie 3 kolejnych ramek.

Autor w swoich badaniach skoncentrowat si¢ na eksplorowaniu metod wtasnie z tej
kategorii, poniewaz sa wyjatkowo efektywne obliczeniowo, a uklad pomiarowy

(stacjonarne kamery) pozwala na ich zastosowanie w praktyce.

® Definicja wyjasniona w Stowniczek poje¢ punkt 2, strona 102
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2.2. Metody klasyczne, z wykorzystaniem ekstrakcji cech — wykorzysujace rozne metody
przetwarzania obrazu w celu ekstrakcji kluczowych cech, a nastepnie klasyfikacji

obiektow na podstawie tychze cech.

Metody te wykorzystuja algorytmy i techniki bazujace na modelach matematycznych i
heurystyce. Najczesciej etap detekcji wykonywany jest dwuetapowo. W pierwszej
kolejnosci dokonywana jest ekstrakcja cech, a nastepnie za pomocg jakiego$

klasyfikatora dany obszar obrazu przypisywany jest do okreslonej klasy.
Do popularnych deskryptoréw’ cech naleza:

e Histogram of Oriented Gradients (HOG) [39] — u podstaw tego deskryptora lezy
rozpoznawanie krawedzi na obrazie. Zaklada si¢, ze lokalny wyglad i1 ksztatt
obiektu na obrazie mozna opisa¢ za pomocg rozktadu intensywnosci i kierunku
gradientow. W celu wyznaczenia deskryptora obraz jest dzielony na male
sgsiadujgce obszary zwane komorkami, a dla pikseli w kazdej komorce obliczany
jest histogram kierunkéw gradientu uwzgledniajacy warto$¢ gradientu.

e Haar-like features [40]. Deskryptor bazujacy na Kilku rodzajach elementow
strukturalnych (prostokatnych obszarow zwanych kernelami), za pomocg ktorych
rozpoznawane s3 charakterystyczne obszary na obrazie — linie, krawedzie,
szachownice (four-rectangle), itp.

e Scale-Invariant Features Transform (SIFT) [41]. Idea tego deskryptora jest
wyznaczenie kluczowych punktow dla szukanego obiektu oraz utworzenie

wektora charakteryzujacego kazdy z nich.

Powiedzmy, Zze chcemy znalez¢ na obrazie pitke tenisowa. Wiadomo, ze cechg pitki
tenisowej jest ksztalt okregu 1 kolor jaskrawozielony. Mozemy wyznaczy¢ prosty
deskryptor zawierajacy kolor 1 ksztalt. Metoda polegajaca na wydobyciu z obrazu tych
obszarow, w ktorych piksele maja kolor jaskrawozielony i Sprawdzeniu czy
wyekstrahowany obszar ma ksztatt okregu jest wyjatkowo prostag metoda detekce;ji, ktora

w pewnych okreslonych przypadkach moze by¢ wystarczajaco dobra.

W  zalezno$ci od problemu czgsto konieczne jest opracowanie bardziej
skomplikowanych modeli i metod. Na przyktad, w swojej pracy [42] panowie Ahmadi,

K.; Salari, E zaproponowali metodg sktadajacg si¢ z trzech etapow. W etapie pierwszym

" Patrz Stowniczek pojeé¢ punkt 3, strona 102
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dla kazdej ramki generowane jest 6 podpasm wysokiej czestotliwo$ci za pomocag
transformacji falkowej Dual-Tree Complex Wavelet Transform (DT-CWT). Nastgpnie
potencjalni kandydaci wykrywani sg przez detektor wykorzystujacym adaptacyjny
algorytm CFAR (Constant False Alarm Rate) stuzgcy do wykrywania szukanego
obiektu na tle réznych zaktocen. Ostatnim etapem jest klasyfikacja za pomocg SVM
[43].

Filtr Kalmana [29] jest jednym z kluczowych elementow algorytmu $ledzenia drondéw
opracowanego przez Son i in. [44]. Opracowane przez autoréw metoda sktada si¢ z
dwoch odrebnych trakeréow (wykorzystujacych przeptyw ruchu, ang: motion flow,
przeplyw optyczny, ang: optical flow i histogram cech), predyktora (filtr Kalmana) i
operacji udoskonalania. Pierwszy traker wykorzystuje model ruchu do identyfikacji
poruszajgcego si¢ obiektu, podczas gdy drugi wykorzystuje deskryptor na bazie
histogramu cech kluczowych punktow. Nast¢pnie nastepuje poréwnanie histogramow
obszarow zainteresowan z histogramem modelu i wybierany jest ten ktory jest
najbardziej podobny. W kolejnym kroku potozenie obiektu jest prognozowane za
pomocy filtru Kalmana. Na koniec operacja udoskonalania jest wykorzystywana do

ustalenia doktadnej lokalizacji obiektu.

2.3. Metody wykorzystujace sieci neuronowe

Gloéwnym elementem metod z tej grupy jest sie¢ neuronowa, ktorej zadaniem jest detekcja

sledzonego obiektu.

Aktualnie, wigkszos¢ badaczy koncentruje si¢ na udoskonalaniu metod detekcji obiektow

wykorzystujgcych sieci neuronowe. Przetomowym momentem, od ktorego nastgpit rozkwit

badan nad sieciami neuronowymi byt rok 2012 kiedy model konwolucyjnej sieci

neuronowej AlexNet [45] zwycigzyt w konkursie ImageNet [46].

Cechg odrdzniajacg metody wykorzystujace sieci neuronowe od metod klasycznych jest to, ze

modele bazujace na sztucznych sieciach neuronowych nie wymagaja uprzedniego

przetwarzania obrazu i ekstrakcji cech, aczkolwiek moga by¢ zasilane przetworzonymi

unormowanymi obrazami. Aby mozna byto dokona¢ detekcji obiektu trenuje si¢ model w

procesie uczenia glebokiego (deep learning), z wykorzystaniem zbioru treningowego

zawierajacego roznorodne, dobre jako$ciowo przyktady. Przygotowanie dobrego zbioru nie jest

zadaniem trywialnym i bardzo czasochtonnym. Dlatego bardzo czgsto do trenowania i

ewaluacji modeli wykorzystuje si¢ zbiory danych dostepne w Internecie. Czesto réwniez w
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procesie uczenia sieci wykorzystuje si¢ z juz nauczony model i dostraja si¢ go do nowych
realiow (transfer learning). Jednym z najpopularniejszych zbiorow danych jest baza ImageNet
[47] zawierajaca 14,197,122 zaanotowane obrazy. Podczas procesu uczenia obliczane sg wagi,
ktorych liczba w zaleznos$ci od modelu moze siega¢ wielu milionéw. Im wigksza liczba wag

tym wigksza liczba wzorcow moze by¢ zamodelowana przez siec.

Niestety trening tak duzych modeli wymaga wysokowydajnego obliczeniowo i bardzo drogiego
sprzetu. Dodatkowo pojawia si¢ problem z wyjasnialnoscig i interpretowalno$cig modelu. Przy
tak skomplikowanych architekturach trudno jest precyzyjnie odpowiedzie¢ na pytanie dlaczego

predykcja modelu byta taka a nie inna.

Ze wzgledu na istotne ograniczenia czasowe — catkowity czas przetwarzania jednej klatki musi
by¢ krotszy niz 5 ms, oraz istotne ograniczenia finansowe, autor nie zdecydowal si¢ na
doktadniejsze badanie metod $ledzenia i detekcji korzystajacych z sieci neuronowych,
poniewaz dziataly zbyt dlugo i opracowat wiasny traker i detektor opisany w dalszej czesci
rozprawy. W momencie, gdy autor rozpoczynal prace nad systemem, przeanalizowat
benchmarki przedstawione przez innych badaczy [48, 49] z ktorych wynikalo, ze czas inferencji
dla badanych SOTA (State Of The Art) detektorow wynosit 51ms (Yolo v3), 100ms (Faster R-
CNN [37]) z wykorzystaniem GPU NVIDIA GeForce GTX TITAN X.

Od tamtego czasu opracowano wiele nowych modeli sieci neuronowych oraz poprawiono moc
obliczeniowg kart graficznych. Aktualnie badacze podajag mozliwo$¢ uzyskania nawet 161 FPS
dla modelu YOLOv7 [50] na karcie GPU NVIDIA Tesla V100. Jest to jednak ciagle

nieznacznie dtuzej niz Sms.

Jednym z najbardziej znanych konkursow $§ledzenia obiektow w strumieniu wideo jest VOT
challenge [51] organizowany od 2013 r. Wszystkie nadestane w 2024r na konkurs modele
wykorzystywaly sieci neuronowe, a analizujgc rezultaty, mozna zauwazy¢, ze W pierwszej
piatce az 4 modele wykorzystuja, jako jeden z gldéwnych elementow nadestanego rozwigzania,
Segment Anything Model (SAM) [52], lub jego modyfikacje HQ-SAM [53]. Autor réwniez
weryfikowat mozliwo$¢ wykorzystania SAM przy rozwigzaniu badanego problemu
(segmentacji lotki), a swoje obserwacje opisal w rozdziale 3.4, podrozdzial Porownanie

zaproponowanej metody z Segment Anything Model (strona 118).

Na uwage zastuguje zwycigzca edycji 2024 - S3_Track [54], ktory uzyskat najwyzsza wartos§¢
metryki wedlug ktorej byly poréwnywane modele - Q (Tracking Quality) [55] co stanowi
prawie 10% poprawe w porownaniu z drugim najlepszym modelem. S3_Track to jednoetapowy
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traker, ktory $ledzi wszystkie obiekty rownoczesnie. Sktada si¢ z modutu generowania cech
uwzgledniajacego semantyke i1 modulu skojarzen docelowych, ktory uwzgledniajace
semantyke koreluje cechy z pikselami. Powstale cechy korelacji sa dekodowane do masek
segmentacji. Ten model rozszerza model XMem [56]. Architektura modelu jest pokazana na
rysunku [Rysunek 14]. Warto zauwazyé, ze w swojej architekturze zawiera modut
konwolucyjnej sieci neuronowej (architektura znana od 1989r.) i modut wizualnego
transformera [57] (Vision Transformer ViT), ktory jest stosunkowo nowa architekturg (znana

od 2020r.). Model osigga wydajnos¢ 8FPS z wykorzystaniem karty graficznej NVIDIA V100.
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Rysunek 14 Architektura modelu S3_track®

W literaturze mozna si¢ spotka¢ z wieloma metodami $ledzenia obiektow. Ponizej
przedstawiono wybrane metody, inne niz te wspomnianych wczesniej, wraz z ich wadami i

zaletami.

Filtr Kalmana [29]

Filtr Kalmana, opracowany w 1960r., szacuje potozenie obiektu i przewiduje jego ruch w
kolejnej chwili czasowej na podstawie wewngtrznej reprezentacji stanu obiektu, w tym jego
potozenia, predkosci, a nawet przyspieszenia.

Aby przewidzie¢ przyszly stan, filtr wykorzystuje informacje z poprzedniego stanu obiektu i

model matematyczny analizujacy ruch obiektu. Model uwzglednia réwniez wszelka

8 Zrodto: https://arxiv.org/abs/2407.07760
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niepewno$¢ w ruchu obiektu (Szum procesowy i szum pomiarowy). Oryginalnie, filtr
Kalmana zostal opracowany dla uktadow liniowych i znalazt szerokie zastosowania w wielu
galeziach techniki. Modyfikacje filtru Kalmana pozwalaja na prace z ukladami
niestacjonarnymi (zmienny w czasie model) i nieliniowymi (Rozszerzony Filtr Kalmana -
uzyty przy misji Apollo)
Zalety:

e Matematyczny model nie wymagajacy zadnego szkolenia.

e Wydajny obliczeniowo.

Wady:
e Mniejsze mozliwo$ci w porownaniu do nowoczesnych algorytméw wykorzystujacych
uczenie glebokie.
e Aby dziatal poprawnie musza by¢ spelnione pewne zalozenia, na przyktad stale
przyspieszenie obiektu (dla wersji liniowej).

e Algorytm nie sprawdza si¢ dobrze w scenariuszach z losowym ruchem obiektu.

KCF [58]
Kernel Correlation Filters to model matematyczny, ktory wyznacza cechy obiektu i uczy si¢
odrézniac je od tla.
Po wyznaczeniu cech obiektu uzywa filtrow korelacji, aby skonstruowa¢ wielowymiarowa
relacj¢ migdzy cechami, a prawdziwym obiektem. Skanujac obraz wokot ostatniej znanej
lokalizacji obiektu wyznacza si¢ obszar o najwyzszej korelacji. Przewiduje si¢, ze obszar o
najwyzszej korelacji bedzie zawierat obiekt.
Zalety:

e Szybkie obliczenia. Ponad 300 FPS.

e Niskie wymagania pami¢ciOwe.

e Skuteczny w $ledzeniu obiektéw o zlozonych teksturach, dzieki modelowanie

nieliniowych zaleznosci w danych.
e Nie wymaga duzych zbiorow danych do treningu. Wystarczy poczatkowy model

obiektu, a algorytm moze $ledzi¢ obiekt bazujac na iteracyjnie aktualizowanym modelu.

Wady:
e Tradycyjny KCF napotyka wyzwania w takich warunkach, jak zmienna skala obiektu,

ksztatt, ztozona deformacja, lub gdy obiekt dotykaja granic obrazu.
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e W zlozonych scenach gdzie wiele obiektow ma podobne cechy, moze przeskakiwaé z
obiektu na obiekt, a gdy obiekt zniknie z pola widzenia kamery lub zostanie przestonigty

przez inny obiekt, $ledzenie moze zosta¢ przerwane.

Median Tracker[59]
Median Tracker bazuje na metodzie Lucasa-Kanade [60] - pola przeptywu optycznego, ktora
zaklada, ze jasnos$¢ pikseli sledzonego obiektu jest niezmienna w czasie, a sasiednie piksele
majg ten sam wektor ruchu, a sam ruch jest maly w kolejnych klatkach. Median Tracker
$ledzi ruch obiektu do przodu i do tylu w czasie i przewiduje dalszg pozycj¢ obiektu w czasie
rzeczywistym.
Zalety:

e Wystarczajaco duza predkos¢ 1 doktadno$¢ Sledzenia, jesli obiekt nie jest przestaniany

przez inne obiekty, a pomiedzy klatkami nie zmienia istotnie swojego potozenia.

¢ Nie trzeba zna¢ modelu dynamiki poruszajacego si¢ obiektu.

Wady:
e Duze prawdopodobienstwo utraty obiektu przy duzej predkosci jego ruchu.

e Po utraceniu obiektu nie mozna go ponownie odnalez¢

DeepSORT [61]

Algorytm Deep Simple Online Realtime Tracking (DeepSORT) pozwala na $ledzenie
rownoczesnie wielu obiektow i jest rozszerzeniem oryginalnego algorytmu SORT.
Oryginalny algorytm SORT uzywa filtrow Kalmana do przewidywania ruchu obiektow i
wegierskiego algorytmu (inaczej Kuhn Munkres algorytm [62]) do skojarzen obiektéw klatka
po klatce.

DeepSORT wykorzystuje dodatkowa neuronowa sie¢ splotowa (CNN) jako ekstraktor cech.
Okreslajag one wyglad obiektu i pozwalajg algorytmowi odréznia¢ ruchome obiekty od

statycznych. Architekture algorytmu przedstawiono na rysunku ponizej
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Rysunek 15 Architektura DeepSORT °
Zalety:
e Wydajna implementacja DeepSort zapewnia $ledzenie w czasie zblizonym do
rzeczywistego.
e Moze obstugiwaé¢ dowolng sie¢ detekcji wybrang przez uzytkownika, taka jak YOLO
lub RCNN.

¢ Odporny na okluzje 1 moze rozrdznia¢ rdzne obiekty w ztozonych scenariuszach.

Wady:
e Trening sieci detekcji w celu uzyskania wysokiej doktadno$ci wymaga rozlegltego
zestawu danych.
e Duza zaleznos$¢ od jakosci detektora.
e Wysokie wymagania obliczeniowe (gldwnie zalezne od wykorzystanej jako detektor

sieci neuronowej).

GOTURN [62] Generic Object Tracking
Jeden z pierwszych algorytmow sledzenia wykorzystujacy gltebokg sie¢ neuronowa. Do sieci
wprowadzane s3 dwa obrazy: ,,poprzedni” i ,,biezacy”. Na ,,poprzednim” obrazie znana jest
pozycja obiektu, natomiast na ,,biezagcym” obrazie pozycja obiektu musi zosta¢ przewidziana.
W ten sposdb oba obrazy sg przepuszczane przez splotowg sie¢ neuronowa, ktorej wyjsciem
jest zestaw 4 punktow reprezentujacych pola ograniczajace przewidywang pozycje obiektu.
Zalety:

e Dziata z predkoscig nawet 100 klatek na sekundg.

e Stosunkowo dobra odpornos¢ na szumy i zaktocenia.

® Zrédto: https://www.researchgate.net/figure/Architecture-of-Deep-SORT-Simple-online-and-real-time-
tracking-with-deep-association_fig2_353256407 Autor: Addie Ira Borja Parico
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Wady:

e Dokladnos$¢ §ledzenia obiektow zalezy od jakosci danych, na ktérych model zostat
wytrenowany. Jesli dane uzyte do treningu nie byly wystarczajaco zrdznicowane,
algorytm moze gubi¢ obiekty o nietypowym zachowaniu.

e Gubienic obiektow, ktore byly zastonigte przez dluzszy czas — brak mechanizmu
odzyskiwania obiektu po zniknigciu.

e Przeskakuje ze sledzonego obiektu na inny, jezeli predkos¢ pierwszego jest zbyt duza.

ByteTrack [64]
ByteTrack to algorytm $ledzacy wiele obiektow, ktorego skuteczno$¢ w duzym stopniu
zalezy od skutecznosci detektora obiektow. Bazujac na mechanizmie DeepSORT, ByteTrack
wymaga, aby detektor wygenerowal obszary detekcji bez wzgledu na wysoko$é
prawdopodobienstwa detekcji  obiektu. W przypadku pdl detekeji z  wysokimi
prawdopodobienstwami  detekcji, ByteTrack wykonuje dopasowywanie cech i
dopasowywanie 1oU° (Intersection Over Union), podczas, gdy dla obszaréw o niskimi
prawdopodobienstwie tylko dopasowywanie loU.
ByteTrack stara si¢ zamodelowac¢ Sposob, w jaki obiekty poruszaja si¢ i oddziatluja na siebie
w dynamicznym $§rodowisku, dzigki czemu dobrze si¢ sprawdza w $ledzeniu obiektow w
gesto zaludnionych scenach, gdzie powszechne s3 przestonigcia 1 szybkie ruchy, oraz
utrzymywanie doktadnej identyfikacji nawet wtedy, gdy obiekty tymczasowo przestajg by¢
widoczne lub zostajg zastonigte.
Zalety:

e Mozliwo$¢ integracji z dowolnymi detektorami, takimi jak YOLOS.

e Dos$¢ dobra wydajnosc¢ (zalezna gtdéwnie od detektora) okoto 30 FPS (YOLOS) na jednej

karcie graficznej.

e Sledzenie wielu obiektow, niezaleznie od ztozonosci srodowiska.

Wady:
e Zalezy od jakosci detektora.
o Sledzenie matych obiektow moze byé problematyczne.
e Moze mie¢ trudno$ci w utrzymaniu sledzenia w dynamicznych scenach, gdzie obiekty

szybko zmieniajg potozenie lub wyglad.

10 Definicja podana w Stowniczek poje¢ punkt 4 na stronie 93
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Badacze do oceny skutecznosci proponowanych rozwigzan cz¢sto wykorzystujg standardowe
zbiory danych takie VOT [55], ALOV [65], OTB [66]. Ciekawych obserwacji dokonali autorzy
publikacji ,,The World of Fast Moving Objects” [67]. Zauwazyli oni, ze najlepsze trakery, nie
zawsze dobrze sobie radzg dla zbiorow z szybko poruszajacymi si¢ obiektami (ang: Fast
Moving Objects — FMO). Do podobnych wnioskoéw doszli Wei Chen i inni [7]. Wynika to z
tego, ze w powszechnie dostepnych zbiorach danych nagrania zawierajace szybko poruszajace

si¢ obiekty sg nielicznie reprezentowane.

W wielu r6znych sportach gra si¢ pitka, lotkg tylko w badmintonie. Z tego tez powodu problem
detekcji 1 $ledzenia pitki [68, 69] jest czgsciej eksplorowany przez badaczy niz problem
$ledzenia lotki do badmintona. Czytajac publikacje dotyczace problemu §ledzenia pitki lub lotki

mozna spotkac si¢ z dwoma podejsciami badaczy do rozwigzania tego zagadnienia.

e Z wykorzystaniem sieci neuronowych.
e Z wyznaczeniem kluczowych cech §ledzonego obiektu i klasyfikacja obiektéw na

podstawie tychze cech.

Jako, ze pitka i lotka s3 obiektami, ktore uderzone poruszaja si¢ po okreslonej trajektorii to w
obu podejséciach badacze wykorzystuja modelowanie ruchu sledzonego obiektu w celu poprawy
skutecznosci $ledzenia. Schematycznie przedstawiono te metody na rysunkach [Rysunek 16,

Rysunek 17].

Dane wejsciowe Detekcja na obrazach z
Strumien wideo z jednej wykorzystaniem sieci
lub wielu kamer neuronowe;j

Estymacja trajektorii w

2D lub 3D

|

Wspotrzedne obiektu w
2D lub 3D

Rysunek 16 Schemat dzialania metod Sledzenia pitki/lotki wykorzystujqcych sieci neuronowe (opracowanie wlasne)

Wspotrzedne
kandydatow na
obrazach
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Dane wejsciowe Przetwarzanie Ekstrakcja
Strumien wideo z wstepne cech Wiedza a-priori
jednej lub wielu kamer Usuniecie tta, o sledzonym

szumow i obiekcie:
Kolor, ksztatt,

. rozmiar, itp.
Detekcja na 1P

podstawie cech
sledzonego

Przetworzone obiektu
obrazy

Estymacja Wspétrzedne
2D lub 3D trajektorii w 2D kandydatéw na
lub 3D obrazach

Wspotrzedne obiektu w

Rysunek 17 Schemat dziatania metod sledzenia pitki/lotki na podstawie cech sledzonego obiektu (opracowanie wlasne)

Przyktadowo Xinguo Yu i Hon Wai Leong zaproponowali dla pitki noznej w [69] dwufazowy
algorytm, ktéry w pierwszej fazie generuje dla kazdej klatki zestaw kandydatow na pitke (na
podstawie koloru, ksztaltu, rozmiaru), a nastgpnie wykorzystuje je do obliczenia zestawu
trajektorii, ktore to sa wykorzystywane jako dodatkowa informacja dla trakera. Autorzy podaja

doktadno$¢ swojego algorytmu na poziomie 81%

Wiele prac badawczych dotyczy w $ledzenia pitki tenisowej [33, 70, 71, 72, 73]. Zaréwno pitka
tenisowa jak i lotka badmintonowa sg szybko poruszajacymi si¢ obiektami [67], jednakze
zarowno ksztalt jak i dynamika poruszajacej si¢ lotki znacznie r6ézni si¢ od pitki tenisowe;j. Z
tego powodu znajdujace si¢ w literaturze metody detekcji 1 $ledzenia pitki nie moga zostac
bezposrednio zastosowane detekcji 1 §ledzenia lotki. Zauwazyli to tez inni badacze zajmujacy

si¢ problemem §$ledzenia lotki badmintonowej [74, 75].

W publikacji Visual Tracking Method of a Quick and Anomalously Moving Badminton
Shuttlecock [74] autorzy $ledzg lotk¢ na podstawie zapisu wideo z wielu kamer. Gdy lotka
porusza si¢ szybko 1 jest rozmyta (efekt motion blur), autorzy wykorzystuja ksztatt rozmazane;j

lotki w celu jej lokalizacji. Doktadno$¢ lokalizacji lotki podana przez autoréw wynosi 4cm.

W celu wyznaczenia pozycji lotki w 3D autorzy innej publikacji ,,Using FTOC to track
shuttlecock for the badminton robot” [7] rowniez uzywaja systemu pomiarowego, gdzie wiele
kamer obserwuje te samg przestrzen. Po usunigciu tta, nastepuje sledzenie lotki po detekcji, do

ktorej wykorzystywana jest metoda AdaBoost [76], a deskryptorem cech jest Haar-like features.
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Wydajnos¢ zaproponowanej metody wynosi 10.65 FPS (obliczenia wykonywane na karcie
graficznej NVIDIA M1200).

W [75] autorzy dla kazdej ramki generujg zbior elementéw na podstawie ramki roznicowej
wygenerowanej z trzech kolejnych ramek. Wszystkie wygenerowane elementy sa traktowane
jako kandydaci na lotke lub kandydaci na zawodnika. Nastepnie na podstawie oceny rozmiaru
kandydata nastepuje przydziat do jednej z grup — lotka, zawodnik. Ostateczna decyzja zostaje
podjeta przy uzyciu zestawu filtrow (rozmiar obiektu, kolor, trajektoria, predko$¢ poruszania
si¢). Skuteczno$¢ zaproponowanego przez autorow trakera jest na poziomie 84%. Niewatpliwg
zaletg te] metody jest jej szybkos¢ dziatania wynoszaca 350 ramek na sekundg. Podobne
podejscie, ale wykorzystujace technike ksztaltu z sylwetki w celu modelowania w 3D

zaproponowali Shishido i Hidehiko [74].

W 2021 roku Zhiguang Cao wraz z innymi [10] zaproponowal dwie nowatorskie sieci o
nazwach M-YOLOvV2 i YOLOBR bazujace na Tiny YOLOv2. Autorzy zmodyfikowali
architektur¢ Tiny YOLOV2, oraz funkcj¢ straty, tak aby poprawi¢ czas jaki potrzebuje sie¢ do
wykrywania matych obiektéw, takich jak lotki, oraz aby zachowa¢ wigcej informacji
semantycznych o matych obiektach. Oni podobnie jak Shishido i Hidehiko uzywaja stereowizji

1 dwukamerowego zestawu pomiarowego ZED, a wydajno$¢ ich metody wynosi 22FPS

(NVIDIA M1200).

Warto zwroci¢ uwagg, ze zadna z zaproponowanych przez innych autoréw metod detekcji i
$ledzenia lotki nie ma, ani wystarczajacej doktadnosci, ani wydajnosci oczekiwanej przez rynek
(patrz rozdziat 1.2). Metody wykorzystujace sieci neuronowe sg przede wszystkim zbyt wolne.
Autorzy przywotanych publikacji podaja wydajnos$¢ od 10 do 22 FPS, co jest niewystarczajace
w celu precyzyjnego okreslenia lokalizacji szybko poruszajacej si¢ lotki. Rejestracja wideo z
predkosci 20 FPS oznacza, ze pomigdzy kolejnymi klatkami mija 50 ms. Bioragc pod uwage
uderzenie clear, po ktorym przy linii koncowe;j lotka porusza si¢ z predkoscia graniczng 6,7m/s
[19] to i tak miedzy kolejnymi klatkami pokona dystans 33cm. To nastrecza dodatkowe
problemy — konieczna staje si¢ ekstrapolacja potozenia lotki. Proponowane przez badaczy,
metody klasyczne sa natomiast niewystarczajaco doktadne — rynek oczekuje doktadnosci na
poziomie 13mm, a proponowane metody maja doktadnos¢ okoto 40mm. Skuteczno$¢ trakerow

na poziomie 81-84% tez nie jest szczegdlnie wysoka.

W porownaniu z wigkszymi lub bardziej jednorodnymi obiektami (np. pitka do siatkowki)

$ledzenie lotki jest zdecydowanie trudniejsze 1 wymaga istotnych zasobow sprzgtowych [77].
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Z tego tez powodu, autor podjat decyzje o stworzeniu wlasnego trakera bazujgcego na metodzie
usuwania tta. W szczegélnosci, autor $wiadomie podjat decyzje 0 rezygnacji z trakera
wykorzystujacego sieci neuronowe — gtéwnie z powodu dlugiego czasu inferencji. Autor w
swoim rozwigzaniu, jako jeden z elementow, wykorzystuje filtr Kalmana, poniewaz jest to
niewymagajacy treningu model matematyczny, ktory jest wyjatkowo efektywny obliczeniowo,
a wymagania, ktore ma, aby dziatal poprawnie sg spetnione w badanym scenariuszu - lotka przy

podtozu porusza si¢ ruchem o statym przyspieszeniu.

2.2. Wyznaczenie momentu i miejsca odbicia lotki o podloze

Rozwigzanie, opisanego wczesniej, problemu detekcji i $ledzenia lotki jest jednym z elementow
pracy badawczej autora koniecznym do precyzyjnego okreslenia miejsca upadku lotki w
stosunku do referencyjnych linii kortu. Autor znalazt tylko jedna publikacj¢ ,,Computer vision
approach to automatic linesman” autorstwa Leong, L.H.; Zulkifley, M.A.; Hussain, A.B. [78],
ktora porusza badany przez autora temat - upadku lotki w korcie lub poza nim. W
przeciwienstwie do autora, wspomnieni badacze nie testowali swojego rozwigzania w realnych
warunkach — podczas turniejoéw badmintona. Dodatkowo, ich kamera obserwowata tylko tylng
lini¢, a w 61 wybranych do testow sekwencjach wideo nie byto zawodnikow - byta widoczna
tylko sama lotka. Ograniczyli rowniez rodzaj zarejestrowanych uderzen do dwoch - smecz i
drop. Kolejnym uproszczeniem byto to, ze wybrali tylko takie sekwencje, w ktorych ich
detektor rozpoznat lotke na wszystkich klatkach. Detekcje lotki przeprowadzili usuwajac tto
przez generowanie ramek réznicowych. Moment 1 miejsce odbicia w tej pracy zostal wybrany
dla klatki, w ktorej wspotrzgdna y konturu lotki wyznaczonego z ramki réznicowej miala
najwicksza warto$¢ i autorzy nie skupiali si¢ na precyzyjnej jej segmentacji (w szczegdlnosci
catkowicie pomingli wptyw cienia lotki na ramke roznicowa). W realnych warunkach jest to
niezwykle istotne, w celu doktadnej lokalizacji miejsca odbicia lotki o podloze. Ostatecznie
doktadno$¢ zaproponowanego rozwigzania wyniosta 80% i jest istotnie nizsza od osiggni¢te]

przez autora — 94%.

Precyzyjna segmentacja jest istotna w celu wyznaczenia mozliwie doktadnie miejsce odbicia
lotki o podtoze. Tradycyjne podejScie do problemu segmentacji bazuje na ekstrakcji
niskopoziomowych cech opisujacych wlasciwosci krawedzi, ksztalttow, rozktad gradientow czy
kolorow. Metody tradycyjne zazwyczaj maja niskie wymagania obliczeniowe, ale czesto tez
wymagaja dopasowywania parametrow przez uzytkownika. Aktualnie badacze sktaniajg si¢ ku
metodom wykorzystujagcym sieci neuronowe, ktore ewoluowaty w kierunku rozpoznawania

tego co si¢ dzieje na obrazie.
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Omowienie metod potencjalnie przydatnych do segmentacji lotki

Analizujac literature na temat segmentacji malych obiektow, a w szczegolnosci z
uwzglednieniem segmentacji pitki/lotki w sporcie, autor nie natrafil na wiele publikacji
poruszajacych temat. Wiekszo$¢ badaczy zajmujgcych sie analizg zapisow wideo z zawodow
sportowych, porusza w swoich publikacjach tylko sam problem detekcji, a nie detekcji i
segmentacji. W tym rozdziale autor dokonuje przegladu uznanych metod segmentacji
(wykorzystywanych nie tylko w sporcie), ktére moga by¢ potencjalne przydatne do segmentacji
lotki.

Na krotkie omowienie zastuguje kilka prac poruszajacych temat segmentacji lotki lub pitki.

T. Dierickx w swojej pracy [79] najpierw usuwa tlo, a nast¢pnie na uprzednio przetworzonym

obrazie dokonuje segmentacji lotki z wykorzystaniem metody progowania globalnego.

W swojej pracy [80] D’Orazio i inni przetwarzaja wejSciowy obraz wyznaczajac krawedzie, a
nastepnic wyszukuja okregi lub czesci okregow w celu segmentacji pitki futbolowej

wykorzystujgc metode bazujaca na Circle Hough Transform [81].

Metod¢ wykorzystujaca splotowa sie¢ neuronowg zaproponowali Zandycke, Gabriel i inni [82],
w ktorej ich sie¢ (hazwana Ball R-CNN) zostata wytrenowana do predykcji mapy cieplnej pitki.
Na etapie inferencji dodatkowe reguly wybieraja sposrod kandydatow na pitke jednego
najlepszego wykorzystujac miedzy innymi informacje o dynamice ruchu pitki. Wyniki
zaproponowanego modelu porownujg z wynikami uzyskanymi za pomocg sieci Mask-RCNN.
Zaproponowany model dziata z predkoscia 38.39 FPS (obliczenia na karcie Nvidia GTX 1080
Ti dla obrazoéw o rozdzielczosci 1024x512px) i jest istotnie szybszy od Mask-RCNN — 4.33
FPS.

Ponizej przedstawiono wady i zalety potencjalnie przydatnych do segmentacji lotki og6lnych

metod segmentacji obiektow.
Progowanie

e globalne,

e lokalne,

e adaptacyjne,

e metoda Otsu [79]
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Metody wykorzystujace progowanie polegaja na wybraniu tych pikseli obrazu, ktorych

charakterystyka (intensywnos$¢, kolor) jest w okre§lonym przedziale warto$ci.

Zaleta tej metody jest to, iz jest szybka i prosta, wada jest trudno$¢ w optymalnym doborze

warto$ci progowych.
Wyznaczenie krawedzi [84, 85]

Metoda ta zaktada, ze pomiedzy réznymi obiektami nastgpuje gwaltowna zmiana jasnosci

pikseli. Po wykryciu krawedzi, obszary otoczone nimi moga by¢ zidentyfikowane jako obiekty.
Zalety:

e Wysoka skuteczno$¢ w znajdowaniu konturéw i granic obiektow.

e Dobrze radzi sobie w obrazach o wyraznych i ostrych granicach.
Wady:

e Moze generowac zbyt wiele krawedzi, komplikujac segmentacje.

o Wymaga dodatkowych krokéw, aby potaczy¢ krawedzie 1 utworzy¢ zamkniete kontury.
Segmentacja bazujaca na regionach [86, 87]

e rozrost regionow,
¢ podziat regionow,
¢ metoda dziatow wodnych

Metody te polegaja na dzieleniu obrazu na obszary na podstawie jednorodnosci pewnych

wilasciwosci (koloru, tekstury).

Metoda rozrostu regiondéw startujac z punktow startowych, taczy je w coraz wigksze obszary
(dodajac piksele) na podstawie spetnienia kryterium jednolito$ci. Wynik segmentacji czgsto

zalezy od wyboru punktow startowych.

W metodzie podziatu regionéw nastgpuje rekurencyjny podzial obrazu na coraz to mniejsze

obszary i poszukiwanie obszarow jednolitych.
Zalety:

o Dobrze segmentuje obszary o jednolitych cechach, nawet przy niskim kontrascie (0 ile

regiony sg jednorodne).
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Wady:
e Wrazliwa na wybor punktow startowych 1 parametrow progdw.
e Moze wygenerowaé zbyt duza liczbe matych regionow.
Metoda dzialéow wodnych

Metoda dzialéw wodnych rozpoczyna tworzenie regionow (rozlewisk) poczawszy od lokalnych
miniméw intensywnos$ci jasnosci pikseli, 1 wyznacza granice w miejscach spotykania si¢

rozlewisk lub najwiekszych gradientéw.

Zalety:
e Duziata dobrze w przypadku obrazow z wyraznymi lokalnymi minimami.
o Skuteczna w segmentacji elementéw o wyraznych granicach.

Wady:

e (Czgstym problemem algorytmu jest nadmierna segmentacja (oversegmentation) z

powodu duzej liczby miniméw lokalnych.

e W celu poprawy rezultatow czesto wymaga dodatkowego przetwarzania, np.

zastosowania markerow
Metody grafowe [88, 89]
Metody grafowe stosuja algorytmy z teorii graféw do celéw segmentac;ji.

Najpopularniejszy jest algorytm Graph-cut [90], ktory traktuje kazdy piksel obrazu jako wezet
grafu. Wprowadza wezly oznaczajace obszary tta i Zrddla 1 laczy kazdy piksel z weztami
obszarow krawedziami, ktoérych waga oznacza prawdopodobienstwo przynaleznosci do tla lub
zrodha. Nastepnie wyszukuje rozcigcia (cuts) rozdzielajgce obiekty tla i Zzrodia, ktorego miarg
jest zbior krawedzi, a wsrdd tych przecie¢ wyszukuje minimalne (takie ktérego rozmiar waga

lub energia jest najmniejsza)
Zalety:
o Pozwala na uzyskanie precyzyjnych rezultatow.

e Skuteczna dla obrazéw o wyraznej réznicy pomiedzy ttem 1 Zrodtem.
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Wady:
e Spora ztozonos¢ obliczeniowa, szczegolnie dla duzych obrazow.

e Aby uzyska¢ zadowalajace rezultaty nalezy prawidtowo dobra¢ rézne parametry

algorytmu (zalezne od przetwarzanego obrazu).
Active Contour Models (ACMs) Atywne kontury - Snake

Aktywny kontur - to model pewnej deformowalnej krzywej, ktéra wykorzystywana jest do
obrysu ksztattow. Wymaga zainicjowania konturu niedaleko obiektu, ktory podzniej zostaje
przesuwany w stron¢ obiektu. Jest metoda zaproponowana w 1988r przez Kass’a [91], ktéra
dopasowuje krzywa do granic obiektu minimalizujac pewng funkcj¢ energii. Od tamtej pory

wielokrotnie udoskonalana, a ostatnie prace potaczyty ACM z sieciami giebokimi [92].
Zalety:

e Dobrze radzi sobie z doktadnym dopasowaniem ksztattu obiektu, nawet w przypadku

ztozonych konturow.

e Model aktywnego konturu moze dynamicznie dostosowywac swoj ksztalt do ztozonych

obiektow, nawet jesli ich granice sg nieciagte lub zakryte.
e Moze radzi¢ sobie z obiektami o stabo widocznych granicach.

e Oprocz krawedzi, model moze by¢ rozszerzony o inne cechy obrazu, takie jak

intensywnos¢, kolor czy tekstura.
Wady:

e Wynik segmentacji moze by¢ wrazliwy na poczatkowe ustawienie krzywej. Zia

inicjalizacja moze prowadzi¢ do niepoprawnej segmentacji.

e ACM minimalizuje pewng funkcje energii, co moze prowadzi¢ do utknigcia w lokalnym
minimum 1 braku poprawnego dopasowania do obiektu, zwlaszcza w przypadku

szumOw czy niewyraznych granic.

e Model preferuje segmentowanie obiektow o stosunkowo gladkich konturach.
Segmentacja obiektow o ostrych katach lub nieregularnych krawedziach moze by¢

mniej skuteczna.
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e Obliczenia zwigzane z minimalizacjg energii i deformacjg krzywej moga by¢ kosztowne
obliczeniowo, co sprawia, ze metoda moze by¢ wolna, zwtaszcza w przypadku duzych

obrazéw.

o Krawedzie obiektow moga by¢ zaktocone przez szum w obrazie, co utrudnia precyzyjne
dopasowanie konturu. Moze by¢ wymagane dodatkowe przetwarzanie obrazu w celu

usunigcia szumu.
Metody wykorzystujace sieci neuronowe
Mask R-CNN [93]

Mask Region-based convolutional neural network rozszerza architekturg sieci faster R-CNN
poprzez dodanie kolejnej gatezi, ktora przewiduje maski segmentacji we wskazanych regionach

zainteresowan.

W pierwszym etapie nastgpuje ekstrakcja cech z obrazu za pomoca bazowej sieci splotowej
(CNN). Te cechy sa uzywane do dalszego przewidywania regionow, detekcji obiektow i

segmentacji.

Drugim etapem jest propozycja regionéw (Region Poposal Network - RPN), w ktorych
prawdopodobnie znajduja si¢ obiekty.

W ostatnim etapie nastepuje predykcja klas obiektow i wybor regionu o najwyzszej wartosci

loU oraz wygenerowanie doktadnej maski segmentacyjne;j.
Zalety:

e Potrafi rozrdéznia¢ i segmentowac poszczegolne obiekty (instancje) tej samej klasy (np.
kilka balonéw na jednym obrazie). Kazdy obiekt ma wtasng maske segmentacyjna.

e Wysoka precyzja w wyznaczaniu granic obiektow.

e Elastyczna 1 modularna architektura. Mozna tatwo modyfikowaé poszczegdlne
komponenty np. zmieni¢ sie¢ bazowg, w zaleznos$ci od potrzeb 1 zasobow sprzgtowych.

e Detekcja i segmentacja w jednym modelu.

e Skalowalno$¢ do obrazéw o réznych rozdzielczo$ciach.
Wady:

e  Wymaga duzych zasobow GPU i pamigci, co moze ograniczac¢ jego zastosowanie do

urzadzen 0 wystarczajacych parametrach sprzgtowych.
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e Dziala wolniej w porownaniu do prostszych modeli detekcji, zwlaszcza przy obrazach
o duzej rozdzielczos$ci lub zawierajacych wiele obiektow.

e  Wymaga duzych, dobrych jakosciowo zestawow danych do treningu.

e Problemy z malymi obiektami. Dla malych obiektéw dostepne s3a ograniczone
informacje o cechach, poniewaz sg one generowane z wykorzystaniem mniejszej liczby
pikseli. Utrudnia to modelowi zidentyfikowanie precyzyjnych granic matych obiektow.
Dodatkowo RPN moze mie¢ trudno$ci z wygenerowaniem odpowiednich regionow
zainteresowania, ktore precyzyjnie otaczaja niewielkie obiekty.

e Brak segmentacji semantycznej, gdzie kazdemu pikselowi na obrazie przypisywana jest

etykieta klasy - segmentuje obiekty na poziomie instancji.
SAM [94]

Segment Anything Model to model, ktory pozwala na segmentacj¢ dowolnego obiektu (tzw.
zero-shot segmentation) w przeciwienstwie do innych modeli (np. Mask R-CNN, ktore to
potrafiag znajdowaé tylko te klasy obiektow, dla ktéorych zostaly wytrenowane). W celu
segmentacji konieczne jest wskazanie obszaru, w ktérym znajduje si¢ segmentowany obiekt,
lub kilku punktow lezacych w obrebie obiektu (monit uzytkownika). Model wykorzystuje
architektur¢ kodera-dekodera, gdzie bazujacy na wizualnym transformerze (Vision
Transformer [57]), gtowny koder (image encoder):

- dzieli obraz wejSciowy na male fragmenty (patches), ktére sg przetwarzane
réwnoczesnie,

- transformer przetwarza te mate fragmenty, uczac si¢ wzorcow i relacji miedzy roznymi
czesciami obrazu,

- jako wynik zwraca zwartg reprezentacje obrazu (image embedding), ktora zawiera

istotne cechy obrazu.

Drugim koderem jest koder monitow, ktéry przyjmuje monity uzytkownika jako dane
wejsciowe 1 przeksztalca je na ujednolicong reprezentacje wektorowa, ktéra model potrafi

interpretowac.

Dekoder maski natomiast przeksztalca te wskazowki w dokladne maski segmentacyjne.

Schemat dziatania przedstawiono na [Rysunek 18]
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Rysunek 18 Architektura Segment Anything Model*!

Zalety:

o Wysoka precyzja i elastycznos$c¢.

e Skuteczno$¢ w segmentacji roznorodnych obrazow.

, Score

, Score

o Interaktywno$¢ — dekoder szybko reaguje na wskazowki uzytkownika.

e  Wymaga duzych zbioré6w danych do treningu.

o Wymaga wskazowek uzytkownika.

e Moze mie¢ problemy z segmentacja dla obrazéw, gdzie granice pomi¢dzy obiektami sg

niejednoznaczne lub rozmazane, lub gdy obiekt jest czeScig wiekszej struktury.

e Moze wystgpi¢ problem nadmiernej

segmentacji  (Ove

niewystarczajacej segmentacji (undersegmentation).

11 7rodto https://ai.meta.com/research/publications/segment-anything/
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e Moze mie¢ problemy z segmentacja obiektow (szczegolnie o nietypowych ksztattach),

ktdre nie pojawity si¢ w zbiorze treningowym.
e Znaczne zapotrzebowanie na zasoby obliczeniowe (GPU).

2.3. Wiodace komercyjne rozwigzania wspomagajace decyzje sedziowskie w
sporcie
Na rynku istnieja firmy, ktore oferuja gotowe rozwigzania z wizji komputerowej dla sportu,
jednakze sg one bardzo drogie, takze ze wzgledu na monopolizacj¢ rynku. Najbardziej znanymi
na rynku firmami oferujgcymi komercyjne rozwigzania do detekcji i $ledzenia obiektow w
sporcie sa: Hawk Eye Innovations (Sony) [17], Stats Perform [95], TRACAB [96]. Niestety
zadna z tych firm nie przedstawia szczeg6tdw swoich badan, w zwigzku z czym nie mozna tych
badan, ani powtorzy¢, ani potwierdzi¢ wynikoéw, ktorymi chwalg si¢ wspomniane firmy. Z
biznesowego punktu widzenia jest to zrozumiate, z naukowego klopotliwe. Swiatowy lider -
firma Hawk Eye Innovations wskazuje sredni btad doktadnosci lokalizacji miejsca odbicia pitki
tenisowej na poziomie 3.6 mm [97] nie podajac jednakze zadnych szczegdtow w jaki sposob

dokonano tych szacunkow.

Z informacji udostgpnianych przez wspomniane firmy mozna uzyska¢ tylko bardzo ogdlng
wiedzg co do uzytych technologii. Dla przyktadu rozwigzanie firmy TRACAB, ktore jest
glownie uzywane w pitce noznej do $ledzenia zawodnikow, wykorzystuje algorytmy uczenia
maszynowego i konwolucyjne sieci neuronowe [98]. Warto tutaj nadmieni¢, ze wizyjne metody
Sledzenia obiektow sa narazone na bledy spowodowane okluzjami. Dlatego tez czesto

wymagana jest korekcja tych btedéw przez ludzkiego operatora [99].

Ciagle jeszcze oferowane rozwigzanie nie s3 w 100% skuteczne. Podczas turnieju tenisowego
na kortach Wimbledonu w 2022r. podczas ¢wierc¢finatowego meczu zawodnicy Joe Salisbury i
Rajeev Ram odmoéwili dalszej gry po kontrowersyjnej decyzji systemu Hawk Eye [100]. Po
btednej decyzji (doskonale widocznej na filmie [101]) podczas badmintonowego turnieju
DAIHATSU Indonesia Masters 2021 §wiatowa organizacja badmintona i firma Hawk Eye
wydali o$wiadczenie, w ktorym przepraszaja za ten btad [102]. Z inny przyktadem biednej
decyzji systemu Hawk-Eye w rugby mozna zapozna¢ si¢ ogladajac [103]. Pomimo
wspomnianych blednych decyzji, systemy komputerowe w ogdlnosci sg bardziej doktadne niz
ludzie [104]. Dlatego tez od 2001 roku aplikacje wizji komputerowej sag uzywane w wielu

dyscyplinach sportowych [8, 9], a w badmintonie system Hawk Eye pojawit si¢ w 2014r.
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3. Charakterystyka zasadniczego osiggniecia i opis opracowanej

metody

3.1. Gromadzenie danych do eksperymentow

Istotng wartoscig pracy badawczej autora jest to, ze oprocz danych zarejestrowanych podczas

cksperymentéow w klubie Kahuna w Warszawie, dane byl tez zabierane podczas realnych

zawodow - w roéznych obiektach sportowych posiadajacych tez rézne oswietlenie. Byty to

miedzy innymi hale w Katowicach (Mistrzostwa $wiata seniorow), Wesotej (mistrzostwa

juniorow Mazowsza), Gtubczycach (mistrzostwa Polski U17), Czestochowie (Yonex Polish

Open), Warszawie (mistrzostwa seniord6w Mazowsza). Co wigcej, zostaty zarejestrowane tylko

te sytuacje, gdy zawodnik nie zgadzat si¢ z decyzja sedziego liniowego. Zebrane materiaty

wideo zostaty wykorzystane od opracowania i testow algorytmow. Finalna ocena skutecznos$ci

opracowanego systemu odbyla si¢ zgodnie zZ ponizsza procedurs.

Zdecydowano, ze dane do oceny skutecznosci algorytmow (zbidr testowy)
zostang zarejestrowane w hali, w ktorej nigdy wczesniej nie dokonywano
pomiaréw. Dane zostaty zebrane podczas najwigkszego turnieju badmintonowego
jaki odbyt si¢ w Polsce - mistrzostw §wiata senioréw Katowice 2019 oraz

mistrzostw Polski U17 w Ghubczycach.
Podczas turniejéw zbierano dane w nastepujacy sposob:

o Zakazdym razem, gdy zawodnik nie zgodzit si¢ z decyzja sedziego
podnosit reke, proszac o wideo weryfikacj¢. Po tym sygnale operator
systemu uruchamial procedure zapisu ostatnich 24 sekund danych z

kamery, w polu widzenia ktorej byta lotka.

Zapisane pliki zostaly wezytane na wejSciu do stworzonego na potrzeby projektu

oprogramowania do anotacji danych.

Poniewaz w zapisanym klipie przez wigkszo$¢ czasu nic si¢ nie dzieje — sa
widoczne linie kortu, osoba anotujgca dane z 24 sekundowego klipu starata si¢
wybierac te fragmenty, na ktorych wida¢ byto poruszajace si¢ obiekty
(zawodnikow, lotke, publiczno$€ itp.) oraz moment odbicia lotki o podtoze. Nie
oznacza to, ze w$rdd danych do testow nie ma takich obrazow, na ktérych wida¢
tylko linie kortu 1 nic wigcej. Jednakze jest ich zdecydowanie mniej, niz gdyby

zachowano do anotacji cale 24 sekundowe sekwencje. Dla kazdej ramki w
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wybranych sekwencjach oznaczono pozycje lotki oraz moment odbicia korka
lotki o podtoze. Dla ramki, w ktorej nastapito odbicie o ziemie operator zaznaczat
obszar, w ktorym lotka dotykata podtoza i decydowat czy lotka jest w polu gry,
czy poza nim. Drugi operator dokonywat weryfikacji anotacji i korygowat bledy.
Ostateczna weryfikacja czy lotka upadta w polu gry, czy poza nim byta dokonana

przez licencjonowanego sedziego badmintona panig Joanne Madry*2

Tak utworzono zbidr danych liczacy 13442 obrazy. Na 1793 obrazach operator
zaznaczyl pozycje lotki (ground truth), na 11649 ramkach nie byto lotki.

e Zbior danych zostal podzielony na zbidr treningowy, walidacyjny oraz testowy.
Zbidr testowy zawieral nagrania z Katowic i Glubczyc i zostal wykorzystany do
ostatecznej weryfikacji calo$ci rozwigzania. Dane z pozostatych hal zostaty
podzielone na zbior treningowy i walidacyjny. 75% sekwencji przydzielono

losowo do zbioru treningowego a 25% do zbioru walidacyjnego.

e Zebrane dane zostaly wykorzystane do opracowania odpowiednich modeli i
algorytmow oraz do oceny ich skutecznosci. Zostaty wyznaczone odpowiednie

miary, a te modele, ktore byty najlepsze zostaty ostatecznie wybrane.

3.2. Ogolny opis zaproponowanej metody

Jak juz wspomniano na poczatku, ze wzgledu na wymagania implementacyjne (ograniczone
gabaryty, mobilno$¢, fatwos¢ instalacji i re-konfiguracji, koszt etc.) autor poswiecit duzg uwage
na stworzeniu takich rozwigzan algorytmicznych, ktére nie beda wymagatly duzej mocy
obliczeniowej i nie bgda miaty wysokich wymagan pamigciowych, rOwnoczesnie zapewniajac
dostarczenie wynikow w czasie rzeczywistym. Z tego powodu tez w pierwszej kolejnosci autor
tworzyt modele 0 ograniczonej ztozonosci, ktore nastgpnie byly udoskonalane, w celu
zapewnienia wystarczajaco Wysokiej skutecznosci rozpoznania miejsca upadku lotki. Autor
wykorzystujagc realia gry w badmintona 1 wiedze¢ domenowa wsparta wlasnym
doswiadczeniem, zdobytym przez kilkanascie lat grania w turniejach badmintona, rozszerzyt
znane z literatury koncepcje o wiasne rozwigzania ekstrakcji i selekcji kluczowych cech,
wyznaczanych na podstawie zarejestrowanych sekwencji wideo zawierajgcych lecacg lotke i
moment jej upadku na kort. Opracowane rozwigzania pozwolity efektywnie rozwigzaé

przedstawione problemy badawcze.

12 Nrr licencji 383 https://pzbad.pl/wp-content/uploads/2024/07/sedziowie_z_kwalifikacjami_01072024.pdf
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Podstawowym problemem jest ustalenie potozenia upadajacej lotki wzgledem linii kortu na
podstawie jednej Kkluczowej ramki (najblizszej momentowi upadku), ktorg udato si¢
zarejestrowa¢ z zadang rozdzielczo$cia czasowa (kompromis wzgledem ograniczen
sprzetowych i czasowych oraz uwarunkowan zewnetrznych - glownie os$wietleniowych,

panujacych w hali sportowej).

Aby rozwigza¢ podstawowy problem badawczy nalezy tez rozwigzaé tez szereg innych
probleméw o ktére wymieniono w rozdziale 1. Ponizej, w sposéb ogolny, przedstawiono
metode¢ rozwigzania trzech kluczowych problemow badanych przez autora, ktore zostaly

szczegOlowo opisane w dalszej czesci rozprawy.

Detekcja i Sledzenie lotki

Aktualnie wickszo$¢ badaczy problem detekcji obiektow na obrazie rozwigzuje z uzyciem
ztozonych modeli sieci neuronowych. Autor rowniez korzysta z sieci neuronowej (YOLOV3),
ale tylko wtedy gdy podstawowy modut $ledzacy zgubit lotke. To wyjatkowe, hybrydowe

podejscie pozwala na dziatanie opracowanego rozwigzania W czasie rzeczywistym.

W podstawowym module $ledzacym, do detekcji poruszajacej si¢ lotki (taka nas tylko
interesuje), autor wykorzystat odpowiednio przetworzone dane ze strumienia wideo, tworzac
ramki réznicowe oraz akumulacyjne ramki réznicowe. Dzigki odpowiedniemu doborowi
parametrow (kamery jak i parametréw modutu tworzacego akumulacyjne ramki réznicowe)
poruszajaca si¢ lotka na akumulacyjnej ramce réznicowej ma ksztaltt podobny do kredki
[Rysunek 19]. Ten charakterystyczny ksztalt jest znajdowany i $ledzony w kazdej klatce
strumienia wideo. Warto zauwazy¢, ze ksztatt jaki ma lotka na akumulacyjnej ramce réznicowej
wyznacza rownoczesnie kierunek, w ktorym si¢ porusza. W opracowanej metodzie detekcji i
$ledzenia lotki, ze wzglgdu na mozliwe okluzje, autor wykorzystuje tez szaroodcieniowe obrazy
zarejestrowane przez kamerg, ktore sag wejsciem do sieci neuronowej. Schemat algorytmu zostat

szczegotowo opisany w dalszej czesci rozprawy.
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Rysunek 19 Akumulacyjna ramka réznicowa, na ktorej lotka ma charakterystyczny ksztalt

Wyznaczenie kluczowej ramki, w ktérej nastapilo odbicie o podloze

W zwigzku z tym zastosowanym uktadem kamer [Rysunek 3] nie jest mozliwe wyznaczenie
pozycji lotki w przestrzeni tréjwymiarowej. W ukladzie kamer nad kortem, gdy mamy
trajektori¢ lotki w 3D mozna wyznaczy¢ moment odbicia analizujac zmienno$¢ trajektorii lotki.
W przypadku, gdy mamy tylko dane w 2D wyznaczenie momentu odbicia na podstawie
zmiennoSci trajektorii jest trudniejsze - szczegdlnie, gdy lotka leci ptasko w strong kamery, a
po odbiciu prawie nie zmienia swojej trajektorii w stosunku do kamery. Takie sytuacje zdarzaja
si¢ najczesciej po uderzeniu smash, ktore zawodnicy gltéwnie kieruja w kierunku linii boczne;.
Gdy lotka upada w okolicy linii koncowej (dzieje si¢ tak po uderzeniu clear), t0 mozna
wyznaczy¢ moment odbicia na podstawie $ledzenia zmiennosci trajektorii. Jednakze ze
statystyk zebranych przez autora [Tabela 21, strona 116] wynika, ze gdy lotka upada w okolicy
linii koncowej, zawodnicy prosza 0 weryfikacje z systemu challenge tylko w 1/3 przypadkow,
wigc metoda analizy zmiennoS$ci trajektorii nie zawsze bedzie skuteczna. Biorac pod uwage
poczynione obserwacje, autor opracowal metode, ktéra w celu wyznaczenia kluczowej ramki,

w ktorej nastgpito odbicie o podtoze, analizuje rowniez inne dane.

Na rysunku [Rysunek 20] przedstawiono przyktadowe zachowanie lotki upadajacej na linie
koncowag po uderzeniu clear, a na rysunku [Rysunek 21] na linie boczng po uderzeniu smash.
Zottym kolorem zaznaczono trajektorie lotki wygenerowana przez traker, a zotta kropka

oznacza pozycj¢ korka zwrdcong przez traker.
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Rysunek 20 Kolejne klatki z lotkg odbijajgca si¢ od podioza w okolicy linii koricowej po uderzeniu clear

B IR CEE R B
Rysunek 21 Lotka odbijajqca si¢ od podioza w okolicy linii bocznej po uderzeniu smash

U podstaw algorytmu wyznaczajacego kluczowa ramke jest fakt, ze w momencie odbicia lotka

istotnie zmniejsza swoja predkos¢ (korek przestaje si¢ poruszac¢). Autor wyznacza szereg cech

uzyskanych na etapie przetwarzania danych, ktore nastepnie sg wejsciem do modelu uczenia

maszynowego. Wytrenowany model odpowiada na pytanie czy w danej ramce byto odbicie o

podtoze czy tez nie.

Powstaje pytanie czy kamera zawsze zarejestruje moment odbicia o podtoze, czy tez chwilg
przed lub po. Aby odpowiedzie¢ na to pytanie, trzeba wiedzie¢ jaka jest przerwa czasowa
pomiedzy rejestracja kolejnych klatek przez kamere. Ta przerwa czasowa zalezy od modelu
kamery i ustawien jej parametrow. Do rejestracji wideo uzyto kamer Basler ace UacA800-
200gm [105] dziatajacych w trybie free run [106] (z maksymalng mozliwg szybkoscia). Dla
tego trybu sposdb akwizycji danych przez kamere przedstawiono na rysunku [Rysunek 22].
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Rysunek 22 Sposéb w jaki kamera naswietla ser:Is-(I)Toedczytuje z niego dane dla kolejnych ramek™®
Przerwa czasowa pomigdzy naswietlaniem sensora kolejnych klatek jest sumg czasu
potrzebnego na odczyt danych z sensora kamery (Readout) i opo6znieniem rozpoczecia
ekspozycji [107]. Uzyte przez autora kamery pozwalajg na rozpoczecie naswietlanie nowej
ramki, w czasie gdy dane z sensora kamery dla poprzedniej ramki sg jeszcze odczytywane. Dla
tej konkretnej kamery sg to (podane przez producenta) wartosci: Sensor Readout Time —10 us
oraz Exposure Start Delay - 3us. Czyli maksymalna przerwa pomigdzy naswietlaniem
kolejnych ramek moze wynies¢ 13 mikrosekund. Jak juz wspomniano wcze$niej, mimo ze lotka
moze mie¢ predko$¢ poczatkowa powyzej 400 km/h, to ze wzgledu na swoj ksztalt, po
uderzeniu gwaltownie zmniejsza swoja predkosé. Nie zarejestrowano przy podtozu predkosci
wyzszych niz 9.72 m/s. Oznacza to, ze w czasie 13 mikrosekund lotka moze pokona¢ dystans
0,126 mm. Jest to maksymalny btad wynikajacy z tego, ze na kluczowej ramce mozemy nie
mie¢ doktadnego momentu odbicia. Ta wartos$¢ jest tak niska, ze z punktu widzenia badanego
problemu pomijalna i autor przyjat, iz zawsze w strumieniu wideo jest ramka z

zarejestrowanym momentem odbicia lotki o podtoze, a nie chwile przed lub po.

Wyznaczenie miejsca odbicia lotki o podloze
W celu wyznaczenia miejsca odbicia lotki o podtoze konieczna jest jej precyzyjna segmentacja

na kluczowej ramce (tej ktora zostata wybrana jako ta, w ktorej byto odbicie o podtoze).

Uktad naktadajacych si¢ na siebie pior lotki powoduje, ze lotka oprocz tego, iz porusza si¢

ruchem postepowym, t0 jeszcze wiruje, w zwigzku z czym nawet w momencie odbicia si¢ lotki

13 7rodto: https://docs.baslerweb.com/overlapping-image-acquisition#non-overlapping-image-acquisition
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o podtoze pidra lotki s3 mocno rozmyte [Rysunek 23]. To rozmycie lotki powoduje, ze
krawedzie lotki nie odcinajg si¢ ostro od tta, co jest szczeg6lnie problematyczne, gdy w tle
biatej lotki znajduje si¢ biala linia. Co gorsze, najczesciej zawodnik prosi o weryfikacj¢ decyzji
sedziego, wiasnie wtedy, gdy lotka w momencie odbicia znajduje si¢ w poblizu linii. Z tego
powodu znane metody segmentacji, ktorych wigckszos¢ bazuje na gradientach, kiepsko radza
sobie z precyzyjna segmentacjg lotki. Autor pragnie zauwazy¢, ze w celu okreslenia miejsca
odbicia lotki o podtoze w stosunku do referencyjnych linii kortu, kluczowa jest segmentacja
korka lotki (ze wzgledu na swoj ksztalt, lotka zawsze odbija si¢ o podtoze korkiem). Aby
wyznaczy¢ na obrazie korek lotki, autor opracowal nowatorskag metode polegajaca na
obliczeniu okrggu wyznaczajacego korek lotki na podstawie wyznaczonych uprzednio cech. W
szczegolnosci autor nie szuka na obrazie konturu lotki, tylko szuka ciemnego paska, ktory
oddziela korek lotki od pior. Ciemny pasek zawsze okala korek i mocno odcina si¢ od biatego
korka i pior — co utatwia jego segmentacje [Rysunek 20, Rysunek 21, Rysunek 23]. Poniewaz
wszystkie lotki muszg spetnia¢ normy dotyczace rozmiaru, to p0 Wyznaczeniu tego paska
mozliwe jest, dokonujgc obliczen matematycznych, wyznaczenie okregu odpowiadajacego
korkowi lotki. Samo wyznaczenie ciemnego paska, a precyzyjniej jednego charakterystycznego
punktu znajdujacego si¢ na prostej przechodzacej przez srodek lotki, to zadanie wytrenowanego

modelu uczenia maszynowego szczegotowo opisanego w dalszej czesci.

Rysunek 23 Lotka odbijajgca si¢ po podioze. Widoczne rozmycie pior oraz czarny pasek oddzielajgcy korek od pior.

3.3. Szczegotowy opis algorytmoéow, eksperymenty i wyniki badan
eksperymentalnych

Detekcja i Sledzenie lotki

Aby moc $ledzi¢ dowolny obiekt, najpierw nalezy go znalez¢ na obrazie. Do znalezienia

konkretnego obiektu mozna zastosowa¢ wiele metod, od najprostszych, takich detekcja na

podstawie cech obiektu takich jak kolor 1 ksztalt, po metody wykorzystujace sieci neuronowe.
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W rozdziale 2 przedstawiono wybrane metody $ledzenia obiektow, ktore z sg stosowane przy

detekcji roznorodnych obiektow. Stosowanie ogoélnego, uniwersalnego podejscia do

wykrywania lotki jest problematyczne z kilku powodow.

1.

W zaleznos$ci od kata pod jakim kamera obserwuje lotke, ksztatt lotki do
badmintona moze by¢ postrzegany na obrazie jako koto lub trojkat [Rysunek 13],
dlatego odnalezienie jej na obrazie jest trudniejsze niz znalezienie pitki, ktora jest
zawsze widziana jako ksztatt kolisty.

W przypadku ustawienia kamer przy liniach kortu, rozmiar lotki moze znaczgco
zmieni¢ si¢ w miar¢ zblizania si¢ do kamery. Lotka moze by¢ zaobserwowana w
odlegtosci od 1,5m do 8,2m. Daje to przeszio pigciokrotng réznice w wielkosci
lotki.

Predkosci z jakimi moze poruszaé si¢ lotka maja duza rozpigtos¢. W momencie
odbicia lotki przez zawodnika moze to by¢ nawet powyzej 400 km/h (uderzenie
smecz) ale juz w momencie odbicia o ziemi¢ moze to by¢ predkos¢ terminalna —
6.7 m/s [108]. Dodatkowo, predko$¢ lotki zaraz po uderzeniu jej przez zawodnika
gwaltownie si¢ zmniejsza. Lotka, w przeciwienstwie do pitki tenisowej, nie odbija
si¢ tak sprezyscie od podtoza. W zwiazku z czym po odbiciu porusza si¢ duzo
wolniej niz przed odbiciem.

Biaty kolor lotki moze by¢ bardzo podobny do sceny (skarpetki zawodnika, biate
linie kortu, litery na tablicach ogtoszeniowych).

Lotka czgsto porusza si¢ w ztozonych sytuacjach: poruszajacy si¢ gracze, szybko
poruszajace si¢ rakiety zawodnikoéw 1 zmieniajgce sig tho.

Ze wzgledu na stozkowy ksztatt i srodek cigzkosci umieszczony w okolicy korka
(a nie w $rodku lotki), trudno jest przewidzie¢ trajektori¢ lotu zgodnie z prawami
fizyki opisanymi prostymi wzorami, zwlaszcza po uderzeniu, lub odbiciu o

podtoze, gdy lotka obraca sig¢ i ma niestabilng trajektori¢ [109].

Dzigki ustawieniu kamer blisko kortu [Rysunek 3], zaweza si¢ pole widzenia kazdej z kamer

do najwazniejszego z punktu widzenia badanego problem obszaru, czyli okolic linii pola gry.

W ten sposob tez ogranicza si¢ widoczno$¢ innych poruszajacych si¢ obiektow (np. graczy) -

lotka jest czesto jedynym poruszajacym si¢ obiektem.

Upraszcza to réwniez problem niestabilnej trajektorii w momencie odbicia lotki przez

zawodnika. Trajektoria lotki sie stabilizuje dopiero po pewnym czasie od odbicia, a przy ziemi

jest juz stabilna i tatwa do wyznaczenia na podstawie kilku kolejnych ramek. Ponadto predkos¢
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lotki na ostatnim metrze przed uderzeniem o podtoze jest prawie stata. Trajektoria lotki jest
wyznaczana na podstawie kolejnych pozycji korka, wyznaczonego z akumulowanych ramek

réznicowych. Jest ona dopasowywana do linii prostej - [Rysunek 24].

Kolejng zaleta ustawienia kamery w poblizu kortu jest to, ze rozmiar lotki w pikselach jest
wickszy, niz w przypadku, gdy kamera obejmuje swoim polem widzenia caly kort i jest
umieszczona w duzej odlegtosci od pola gry. Ustawienie kamery w niewielkiej odlegtosci od

kortu pozwala na osiggni¢cie wickszej doktadnosci lokalizacji miejsca upadku lotki.

Rysunek 24 Trajektoria lotki przy linii oraz przewidywana pozycja lotki wyznaczona za pomocq filtru Kalmana (kolor
zielony), Prawdziwa pozycja loki w kolejnych ramkach wyznaczona przez operatora (kolor zoity)

Opis metody zastosowanej do detekcji lotki
Kolejne kroki jakie wykonywane sg przez algorytm detekcji lotki w celu znalezienia lotki w

strumieniu wideo sg nastepujace:

1. wygenerowanie ramki r6znicowej z dwoch kolejnych ramek,

2. usunigcie duzych obiektow z ramki réznicowe;j,

61



3. wygenerowanie akumulacyjnej ramki z 7 kolejnych ramek réznicowych z pkt 2,

4. wygenerowanie zestawu kandydatow na lotk¢ z akumulacyjnej ramki réznicowej z
pkt 3,

5. zastosowanie zestawu filtrow odrzucajacych ze zbioru kandydatow tych, ktorzy nie
pasuja do modelu lotki,

6. wyznaczenie trajektorii dla kazdego z kandydatow na lotke pozostalych w zbiorze
kandydatéw,

7. Usunigcie ze zbioru tych kandydatow, dla ktorych trajektoria nie pasuje do modelu

trajektorii poruszajacej si¢ przy linii lotki.
Powyzsze kroki algorytmu sa opisane bardziej szczegdtowo w dalszej czgséci rozprawy.

Lotka jest szybko poruszajacym si¢ obiektem na zwykle nieruchomym tle. Dlatego tez
zastosowanie metody polegajacej na generacji obrazéow réznicowych z kolejnych klatek,

pozwala na szybkie odroznienie poruszajacych si¢ obiektow od statycznego tla.

Z drugiej strony, gdy lotka uderza w podtoze t0 moze na chwilg przestaé si¢ poruszaé i
,znikng¢” z obrazu roéznicowego. Dlatego w przedstawionym rozwigzaniu oprocz ramki
roznicowej z dwoch kolejnych zaproponowana metoda generuje akumulacyjng ramke
r6znicowa z 7 kolejnych obrazow roznicowych. Dzigki temu nie zgubimy lotki w momencie
uderzenia o ziemig. Dla zadanej predkosci rejestracji wideo (150-200FPS) eksperymentowano
z r6zng liczbg ramek, z ktorej generowana jest akumulacyjna ramka réznicowa i dla wartosci 7
osiggnigto najlepsze wyniki. Zbyt mata liczba ramek réznicowych do akumulacji powoduje, Zze
trudno odrozni¢ lotke od innych poruszajacych si¢ obiektow. Zbyt duza, natomiast powoduje,
ze w momencie, gdy lotka porusza si¢ w poblizu innego poruszajacego si¢ obiektu (np.
zawodnika), to te dwa obiekty moga si¢ polagczy¢ i lotka przestanie mie¢ charakterystyczny

ksztatt i nie zostanie znaleziona. Przyktad takiej sytuacji znajduje si¢ na rysunku [Rysunek 25]

62



AAATI USSR

Rysunek 25 Lotka, ktéra poruszata sig na tle przesuwajgcego si¢ zawodnika. Z lewej - oryginalny obraz zarejestrowany przez
kamere, srodkowy - akumulacyjna ramka réznicowa, prawy - ramka réznicowa.

To nowatorskie podejscie wykorzystuje, zazwyczaj niepozadany, efekt rozmycia
znajdowanego obiektu. Parametry progowania podczas tworzenia ramki réznicowej zostaly
tak dobrane, aby po utworzeniu ramek réznicowych ich potaczenie w ramke akumulacyjng
utworzylo dla lotki obiekt o ksztalcie zblizonym do kredki [Rysunek 19, Rysunek 25
(srodkowy), Rysunek 26, Rysunek 29a].

W zaproponowanej metodzie intensywnos¢ pikseli w ramce akumulacyjnej odpowiada
kolejnosci  obrazéw uzytych do jej wygenerowania. Piksele z poézniejszych obrazow
réznicowych uzyskuja nizsze warto$ci niz piksele z wczesniejszych obrazéw (od jasnego do
ciemnego odcienia szarosci). W ten sposob uzyskuje si¢ dodatkowg informacje o kierunku
ruchu obiektu. Na takim obrazie znajdowani sg kandydaci na lotke. Kazdy wydzielony obszar
(blob) trafia do zbioru kandydatow i dla kazdego kandydata obliczany jest zestaw cech. Cechy
sg obliczane dla kazdego bloba wyznaczonego na akumulacyjnej ramce réznicowej. Lista
wyznaczonych cech jest przedstawiona w tabeli [Tabela 3]. Na podstawie tych cech i
zdefiniowanych uprzednio filtrow ze zbioru odrzucani sa ci kandydaci, ktorzy nie pasuja do
modelu poruszajacej si¢ lotki. Jesli w zbiorze pozostanie wigcej niz jeden kandydat, to dla
kazdego kandydata z obrazu zarejestrowanego przez kamer¢ wycinamy cze$¢ obrazka 0
rozmiarze 104x104 px, ktorego $rodek jest wyznaczony przez potozenie kandydata i
przekazujemy go do sieci neuronowej wytrenowanej do rozpoznawania lotki do badmintona.
Kandydat, dla ktorego prawdopodobienstwa bycia lotka jest najwyzsze pozostaje w zbiorze.
Jesli po zastosowaniu filtrow w zbiorze kandydatow nie pozostanie zaden kandydat, a w
poprzedniej chwili czasowej (t-1) algorytm znalazt lotke, to z wykorzystaniem filtru Kalmana
przewidywana jest, w chwili t, pozycja lotki: punkt - P(x,y), a wycinek obrazu o srodku w P
przekazywany jest do sieci neuronowej. Jesli w przekazanym wycinku obrazu sie¢ znalazta

lotke, to pozycja P(X,y) jest zapamigtywana jako pozycja lotki w chwili t oraz przepisywane sg
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pozostate cechy lotki z chwili t-1. Jesli sie¢ nie znalazta lotki, to najprawdopodobniej oznacza
to, ze lotka zostala catkowicie zastonigta przez zawodnika. Z punktu widzenia skutecznosci
systemu taka sytuacja jest niepozadana, szczeg6lnie gdy zawodnik przestonit lotke jak uderzata
0 podtoze. W praktyce sytuacje, gdy zawodnik catkowicie zastania lotke zdarzajg sig, tylko gdy
sporna sytuacja dotyczy linii koncowej. Na szczescie linie koncowa obserwujg dwie kamery,

wigc lotka zawsze begdzie widoczna na obrazie z przynajmniej jednej kamery.

Cecha Opis
kontur (C) Lista punktow, ktore definiuja wydzielony na obrazie obszar (blob) bedacy kandydatem na
lotke.
prostokat ) ) o ) ] ] . .
Lista 4 punktéw definiujgcych rotowany prostokat, w ktory wpisany jest kontur C. Wizualnie
(RECT) ceche t¢ zaprezentowano kolorem zottym na rysunku [Rysunek 26 (prawy)]
szerokos¢ Krétszy z bokow prostokata, w ktéry wpisany jest kontur (szerokos¢ lotki wyznaczona przez
. koncowki pior). Wizualni h zaprezentowano na rysunku [Rysunek 26] — kolor
(width) (W) F)nc_ow_l piodr) ualnie ceche te zaprezentowano na rysunku [Rysunek 26] olo
niebieski.
dhugosé , . . . . . .
Dhluzszy z bokéw prostokgta, w ktory wpisany jest kontur. Wizualnie ceche t¢
(height) (H)  zaprezentowano na rysunku [Rysunek 26] — kolor czerwony.
stosunek
szerokosci Wartoéé szeroko$é/dugosé
s w
do dtugosci AR =
(AR)
linia

dopasowania Linia, ktora jest wyznaczona w taki sposob, ze suma odlegtosci punktow konturu od tej linii
jest minimalna.

(FL)
kat (A)

Kat jaki tworzy linia dopasowania z osig 0X obrazu w zakresie od 0 do 180 stopni.

Lista 5 punktow wyznaczonych na podstawie cechy RECT, ktore okreslaja dla danego

~ prostokata kontur lotki. Wizualnie cechg t¢ zaprezentowano kolorem zielonym na rysunku
kontur lotki  [Rysunek 26]

(SC) Z modelu lotki, wiemy, ze pidra sg wbite w korek pod katem 21.28 stopnia w stosunku do
osi lotki. Zatem wyznaczenie konturu lotki polega na ,$cieciu” dwoch bokow prostokata

RECT pod tym wiasnie katem.
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Miara ta jest wyznaczana w nastepujacy sposob:
1. Wyznaczany jest nowy kontur (lista punktow)

CHC = convexHull(C) zgodnie z algorytmem [110]

odlegtos¢ . ) e ,
2. Dla SC oraz CHC obliczany jest obszar jaki zajmujg te kontury zgodnie z
konturu lotki formuta Green’a
(SC) od
Age = contourArea(SC)
konturu (C) Acpc = contourArea(CHC)
-(DIST2SC)
3. Wyznaczana jest wartos¢ DIST2SC jako:
A
DIST2SC = |1 — e
Agc

Tabela 3 Lista cech obliczanych dla kazdego kandydata na lotke

Rysunek 26 Wizualizacja cech lotki (po lewej akumulacyjna ramka réznicowa)
Na rysunku [Rysunek 27] przedstawiono akumulowang ramkg r6znicowg oraz kandydatow na
lotke. Kolor oznacza rodzaj filtra, ktéry spowodowal odrzucenie kandydata. Kazdy z
kandydatow jest obwiedziony prostokatem, ktory wyznacza wysoko$¢ i szerokos$¢ kandydata.
Poprowadzono tez linie dopasowania (FL), ktéore wyznaczajg kierunek poruszania si¢
kandydata na lotke. Biatym kolorem zaznaczono kandydata, ktory zostal ostatecznie wybrany

jako lotka. Dla tego kandydata wyznaczono tez pozycje¢ korka.
Algorytm $ledzacy wyznacza korek lotki jako punkt w nastgpujacy sposob.

e Dla kandydata, ktory zostat ostatecznie wybrany jako lotka wyznaczamy okalajacy go
zrotowany prostokat (RECT).
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e Znajac kierunek poruszania si¢ lotki, wyznaczamy krotszy z bokéw tego prostokata, a
w jego $rodku punkt reprezentujgcy korek. Zwizualizowano to na rysunku [Rysunek
26] — biekitna kropka

Wyznaczona w ten sposob pozycja korka jest wystarczajgca dla algorytmu sledzacego, ale
niewystarczajaca do wyznaczenia miejsca odbicia lotki o podtoze i oceny czy byto pole czy aut.
Doktadne wyznaczenie miejsca odbicia zostato opisane w rozdziale Algorytm wyznaczania

korka lotki i miejsca odbicia o podtoze.

Rysunek 27 Akumulacyjna ramka roznicowa (po lewej) oraz kandydaci na lotke (po prawej)

Kluczowym elementem rozwigzania jest zestaw filtréw. Filtry sg uruchamiane sekwencyjnie
tak dlugo jak pozostaje wiecej niz jeden kandydat na lotke. Na rysunku [Rysunek 28]
przedstawiono schemat algorytmu filtrowania kandydatow. Kolejnos¢ filtrow i sposob ich

dzialania przedstawia si¢ nastgpujaco.

1. Usun kandydatow o za duzym rozmiarze. Sa to tacy, dla ktérych wysokos¢ w pikselach
jest wicksza od wartosci progowej MaxHeigth (sposob wyliczenia tej oraz innych
warto$ci  progowych  opisano  Sposob  wyznaczenie  wartosci  progowych
wykorzystywanych przez algorytm detekcji lotki) lub szeroko$¢ jest wieksza od warto$ci
MaxWidth (na rysunku [Rysunek 27] oznaczone kolorem bigkitnym). Wartosé
MaxHeigth zalezy od tego ile klatek na sekunde rejestrujg kamera (FPS), a doktadnie
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od tego jak dlugo jest naswictlany sensor kamery (im dluzej tym wartos¢ MaxHeight
wigksza — bo rozmycie lotki jest wicksze), odleglosci kamery od boiska oraz od tego z
jaka rozdzielczo$cig obrazu pracuje kamera (im wyzsza rozdzielczo$¢ tym wyzsza
warto$¢ MaxHeight). Natomiast wartos¢ MaxWidth zalezy od rozdzielczosci obrazu i
odlegtosci kamery od boiska.

. Usun kandydatow o zbyt matych wymiarach. Takich, dla ktérych wysokos¢ jest
mniejsza od wartosci MinHeigth lub szerokos$¢ jest mniejsza od wartosci MinWidth.
Warto$ci te oraz MaxHeight i MaxWidth sa wyliczane kazdorazowo po ustawieniu
kamer przy korcie i ustaleniu z jakg ilo$cig klatek na sekunde bedzie rejestrowany obraz.
. Usun tych kandydatow, ktorzy nie poruszajg si¢ w kierunku podioza. Dla kazdego
kandydata mamy obliczony kat, ktory z osig X tworzy wektor poruszania si¢ obiektu.
Jesli ten kat nie mieSci si¢ w uprzednio wczesniej wyznaczonym zakresie, to taki
kandydat jest odrzucany. Sposob w jaki wyznaczono zakres tych katow przedstawiono
ponizej, W rozdziale Wyznaczenie zakresu katéw jaki moze utworzy¢ trajektoria
poruszajacej si¢ lotki w stosunku do podtoza.

. Usun kandydatoéw, dla ktorych wspotezynnik AR — stosunek szerokosci (W) do dtugosci
(H) nie miesci si¢ w ustalonych granicach (MinAspectRatio, MaxAspectRatio).

. Usun kandydatéw, ktorych ksztalt nie przypomina zatemperowanego otdéwka. W
zwigzku z tym, ze kamery sa ustawione na wysokosci okoto 80 cm i patrza w dot na
linie, to lotka, ktora porusza si¢ w kierunku podtoza na akumulowanej ramce réznicowej
bedzie miata ksztalt przypominajacy zatemperowany otowek (patrz [Rysunek 29 (a)]).
Ten filtr weryfikuje jak bardzo ksztalt kandydata odbiega od modelowego ksztattu. Jesli
wyliczona odleglo$¢ jest zbyt duza, to dany kandydat jest odrzucany. Szczegdtowy opis
wyliczenia tej miary znajduje si¢ w tabeli [Tabela 3] — DIST2SC. Jesli wartos¢ tej miary
jest wicksza niz 0,7 to kandydat jest odrzucany. Wartos¢ progowa 0,7 zostata dobrana
eksperymentalnie.

. Jesli w zbiorze kandydatow pozostal wigcej niz jeden kandydat, to poréwnaj pozycje
kazdego z pozostatych kandydatéw z pozycja lotki z poprzedniej ramki. Wybierz tych
kandydatow, ktorzy sa w odleglosci mniejszej niz 15¢cm od pozycji lotki z poprzedniej
ramki - progowa wartos¢ 15 cm wynika z maksymalnej drogi jakg moze przeby¢ lotka
w koncowej fazie lotu w czasie od 5ms do 6,6ms. Jesli po tej operacji nie pozostat w
zbiorze zaden kandydat, to oznacza, ze najprawdopodobniej zgubiono lotke (zostata

przestonigta) Iub sledzono inny obiekt niz lotka (np. skarpetke zawodnika). W takim
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przypadku zwr6é wszystkich kandydatow i przekaz ich do sieci neuronowej w celu

dokonania wyboru jednego z nich.

Czy
liczba

kandydatow
=17

Czy
liczba

kandydatow NIE

TAK1

>17 .
Znaleziono
doktadnie 1
Czy NIE kandydata na
zastosowano lotke
wszystkie
filtry?
Nie
znaleziono
lotki
TAK
Znaleziono
wiecej niz 1 N ;
kandydata = Koniec -
na lotke

Rysunek 28 Algorytm wyboru lotki sposréd kandydatéw na lotke poprzez zastosowanie kolejnych filtrow
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(b)

e st am——
Rysunek 29 Przyktadowe obrazy analizowane przez przedstawiony algorytm. () akumulacyjny ramka réznicowa, (b) ramka
roznicowa, (C) oryginalna ramka zarejestrowana przez kamerg

Sposob wyznaczenie wartosci progowych wykorzystywanych przez algorytm detekcji lotki
Ponizej opisano sposdb wyznaczenia wartosci progowych uzywanych w algorytmie detekcji

lotki.
Warto$¢ progowa MaxWidth w pikselach jest wyznaczana zgodnie ze wzorem:

MaxWidth = REAL WIDTH x max_image_model_distance_ratio
+ MARGIN_IN_PIXELS

gdzie:
REAL_WIDTH - szerokos¢ lotki w milimetrach okre$long przepisami wynoszaca 65mm,
max_image_model_distance_ratio - stosunek szeroko$ci najblizszej kamerze linii w
pikselach do jej rzeczywistej szerokosci w milimetrach
(40mm)
MARGIN_IN_PIXELS - statla warto§¢ zapewniajgca margines btedu - wyznaczona
eksperymentalnie na 6 pikseli

Warto$¢ progowa MinWidth w pikselach jest wyznaczana zgodnie ze wzorem:
MinWidth = REAL_WIDTH * min_image_model_distance_ratio
gdzie:
min_image_model_distance_ratio - stosunek szerokosci najdalszej od kamery linii

bedacej po tej samej stronie siatki co kamera w pikselach do jej rzeczywistej szerokosci
w milimetrach (40mm)
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Warto$¢ progowa MinHeigth w pikselach jest wyznaczana zgodnie ze wzorem:
MinHeigth = REAL_HEIGHT * min_image_model_distance_ratio

gdzie:
REAL_HEIGHT - wysokos$¢ lotki w milimetrach okreslong przepisami - 85mm

Warto$¢ progowa MaxHeigth w pikselach jest wyznaczana zgodnie ze wzorem:

MaxHeigth = (blur_size + REAL_HEIGHT) * max_image_model_distance_ratio

* number_of _frames_in_accumulated_dif f

gdzie:
blur_size — wysoko$¢ rozmazania krawedzi pior lotki wynikajaca z ruchu postepowego
spowodowana czasem ekspozycji sensora kamery. Przyktadowo, jesli lotka porusza si¢
ruchem jednostajnym z predkoscig 200km/h, a czas ekspozycji wynosi 1/150 sek., to
konce pior pokonajg droge 0.37m. blur_size wyznaczono zgodnie ze wzorem:
max_velocity

FPS
max_velocity — maksymalna predkos¢ jaka moze mie¢ lotka przy linii w mm/sek.
wyznaczona na podstawie obserwacji autora - 15m/sek. Nie zaobserwowano predkosci
wyzszych niz 9.72 m/s, ale wyznaczajac te wielko$¢ przyjeto znaczny margines.
FPS — liczba klatek na sekunde rejestrowana przez kamerg
number_of _frames_in_accumulated_dif f - stala  wartos¢ wyznaczona
eksperymentalnie na 7

blur_size =

Warto$¢ progowa MaxAspectRatio jest wyznaczana zgodnie ze wzorem:

MaxHeight

MaxA Ratio = ———
axAspectRatio MaWidth

Wartos¢ progowa MinAspectRatio jest wyznaczana zgodnie ze wzorem:

MinHeight

MinAspectRatio = — —9—
mASpectRatto = G widen

Wyznaczenie zakresu kgtow jaki moze utworzyé trajektoria poruszajgcej sie lotki w stosunku
do podloza.

W zaleznosci od tego, ktora lini¢ obserwuje kamera oraz bioragc pod uwage ograniczenia
zwigzane ze specyfika gry w badmintona, mozna okresli¢ zakres mozliwych katow jakie

poruszajgca si¢ w kierunku podtoza lotka moze utworzy¢ z osig oX (podtozem). [Rysunek 30]
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pokazuje w przyblizony sposob trajektorie dwoch skrajnych uderzen: high clear — uderzenie
obronne, net kill — bardzo mocne uderzenie atakujace z bliskiej odlegtosci od siatki, po ktorych
lotka upada na koncowa lini¢ (670 cm od siatki). Jak tatwo obliczy¢, w skrajnym przypadku,
aby lotka upadta w boisku, to trajektoria lotki, ktora przelatuje nad siatkg (o wysokos$ci 155 cm)
moze utworzy¢ kat z podtozem od 13 (arctan(155/670) = 13,02) do 90 stopni. Dla linii
serwisowej, ktora jest w odleglosci 198 cm od siatki, rozumujac tak samo jak w przypadku linii
koncowej, beda to wartosci od 38 do 90 stopni. Uwzgledniajac jednakze specyfike serwisu,

czyli to ze:

- zawodnik serwujacy nie moze serwowac ,z gory”, tylko musi uderzy¢ lotke na
wysokosci ponizej 115 cm,

- musi serwowac ze swojego pola serwisowego — czyli w odlegtosci co najmniej 198 cm
od siatki,

- stara si¢ zaserwowac tuz nad siatka,

- zawodnik serwujacy uderza lotke duzo 1zej niz podczas zbicia z siatki lub uderzenia
smash, co powoduje, ze trajektoria lotki jest paraboliczna, a nie zblizona do linii prostej

jak w przypadku uderzenia smash

oraz obserwacje i doswiadczenia autora, pozwalajg zatozy¢, ze mozliwy kat jaki moze utworzy¢
z podtozem lotka upadajgca w poblizu linii serwisowej bedzie wynosit od 60 do 75 stopni. Na
zdjeciu [Rysunek 29c] wida¢ lotk¢ upadajaca w okolicy linii serwisowej po serwisie

zawodnika.

155em

670cm

Rysunek 30 Trajektorie uderzen high clear i net kill lotki upadajqcej na koricowq linig

Podobnie rozumujac, mozna wyznaczy¢ mozliwy zakres katow dla linii bocznej. Maksymalny

kat to 90 stopni dla uderzenia wzdtuz linii bocznej. Minimalny kat zaobserwujemy dla zbicia z
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siatki po przekatnej i wyliczany jest podobnie - uwzgledniajagc wysoko$¢ siatki i szeroko$é
boiska (610 cm) — arctan(155/610) = 14.3 stopnia. Przyktadowe trajektorie lotki zostaly

zaznaczone na zdjeciu [Rysunek 31].

Rysunek 31 Przykladowe uderzenia i trajektorie lotki dia uderzen, ktore sq przez zawodnikow najczesciej kierowane w
okolicy linii bocznej
1 — Uderzenie short net
2 — Uderzenie net cross
3 — Uderzenie cross smash

4 — Uderzenie straight smash
5 — Uderzenie net kill

Wyznaczajac ostateczne zakresy katow, autor uwzglednit specyfike uderzen oraz wptyw
klimatyzacji (z obserwacji poczynionych przez autora wynika, ze w duzych obiektach
sportowych poruszajace si¢ powietrze moze wplynaé na opadajaca lotke i spowodowac jej

przesunigcie nawet o 30-40cm).

W szczeg6lnosci uderzenie net Kill (zbicie), dla ktorego przyjeto trajektorie jako linie prosta,
bardzo rzadko konczy sie upadkiem lotki na linie koncowa. Najczesciej lotka po takim
uderzeniu upada w potowie kortu. Jesli jednak upadnie na lini¢ koncows, to trajektoria nie
bedzie juz linig prostg. Podobnie ze jest ze zbiciem po przekatne;j. Jesli takie zbicie jest wzdhuz
calej dlugosci siatki to trajektoria nie bedzie juz linig prosta — po prostu nie da si¢ uderzy¢ tak
mocno lotki, aby mozna byto przyjac lini¢ prosta jako trajektori¢. W zwigzku z powyzszym
autor skorygowat wyliczone wczesniej zakresy katow i ostatecznie w filtrze uwzgledniajgcym

mozliwe zakresy katow przyjeto nastepujace wartosci:
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Linia Kat minimalny Kat maksymalny

Koncowa 25 95
Serwisowa 60 80
Boczna 30 95

Tabela 4 Zakres kqtéw w stopniach jakie trajektoria lotki moze utworzyé z podtozem

Wartosci te zostaty potwierdzone eksperymentalnie.

Przedstawiona metoda pozwala na szybkie znalezienie lotki na obrazie. Caty proces trwa
ponizej 2 ms na komputerze wyposazonym w procesor Intel Core 17 9th Gen. W sytuacji, gdy
nie znaleziono lotki lub pozostato wigcej niz 2 kandydatow to uruchamiany jest dodatkowy
proces wyszukiwania lotki przez sie¢ neuronowg. Proces ten trwa 12ms na komputerze
wyposazonym w CPU: 9th Gen. Intel® Core™ i7, GPU: NVIDIA® GTX 1080.

Wytrenowana sie¢ neuronowa to zmodyfikowany model Tiny Yolo3 [111]. Sie¢ zostata
wytrenowana zestawem danych zebranych podczas turniejow badmintona. Oryginalna sie¢
Tiny Yolo3 oczekuje na wejsciu trzykanatowych zdje¢. W zwigzku z tym, ze uzyto kamer
szaroodcieniowych, to architektura zostala zmieniona tak, ze sie¢ akceptuje obrazy
jednokanatowe. Na rysunku [Rysunek 32] przedstawiono przyktadowe obrazy uzyte do
treningu sieci. Dla tej sieci osiggnigto dla zbioru walidacyjnego miare mAP@0.50 - 94%, recall
- 77% oraz F1-score* na poziomie 86%.

Kluczowe dla catosci rozwigzania jest t0, aby dziatalo w czasie rzeczywistym dla kamer
rejestrujacych obraz z predkoscia do 200 klatek na sekundg. To zatozenie wymusza $redni czas
przetwarzania ponizej Sms. Dzigki temu, ze sie¢ neuronowa otrzymuje tylko wycinek catego
obrazu z kamery oraz dzigki temu, Ze jest uruchamiana tylko w momencie, gdy pierwszy proces
nie dat jednoznacznej odpowiedzi to sredni czas przetwarzania jednego obrazu jest ponizej 3ms.
Na rysunku [Rysunek 33] zaprezentowano strukture algorytmu znajdowania i $ledzenia lotki.
Dwa przyktadowe wyniki dzialania tego algorytmu w postaci filmow w zwolnionym tempie

mozna zobaczy¢ pod adresami: https://drive.google.com/file/d/1rsvcY-

5Q25iN5Hmcv4nW_ DXIWQg9ZAR7J/view?usp=sharing oraz https://drive.google.com/file/d/1-

Btu3YHeyYYm29MncjXMvjHcUePi2El /view?usp=sharing.

14 Sposob wyznaczenia miary mAP, recall, precision, F1-score podano w Sfowniczek poje¢ na stronach 94-95

73


mailto:mAP@0.50
https://drive.google.com/file/d/1rsvcY-5Q25iN5Hmcv4nW_DXIWq9ZAR7J/view?usp=sharing
https://drive.google.com/file/d/1rsvcY-5Q25iN5Hmcv4nW_DXIWq9ZAR7J/view?usp=sharing
https://drive.google.com/file/d/1-Btu3YHeyYYm29MncjXMvjHcUePi2EI_/view?usp=sharing
https://drive.google.com/file/d/1-Btu3YHeyYYm29MncjXMvjHcUePi2EI_/view?usp=sharing

Rysunek 32 Przyktadowe obrazy, na ktorych trenowano sie¢ neuronowq
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Rysunek 33 Schemat algorytmu znajdowania i $ledzenia lotki

Wyniki i ich omowienie

Zgromadzone dane ground-truth potgczono z danymi z trakera i dokonano weryfikacji czy

pozycja lotki zwrdcona przez traker zgadza si¢ z pozycja oznaczong przez uzytkownika.

Przyjeto, ze traker odnalazt lotke we wlasciwym miejscu na obrazie, jesli odleglosé pozycji

korka lotki zaznaczonej przez operatora od pozycji wyznaczonej przez traker wyniosta ponizej

16 pikseli. W przeciwnym razie uznajemy, ze traker zgubit lotke.

Dla 1524 ramek na ktorych operator zaznaczyt lotke, algorytm wykorzystujacy akumulacyjne

ramki r6znicowe (MR) poprawnie znalazt lotke w 1250 przypadkach. W 137 przypadkach lotka

zostata zgubiona przez algorytm MR, a wycinek obrazu z przewidywang pozycja lotki zostat
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przekazany do modutu z siecig neuronowg (MNN). Sie¢ odnalazta lotk¢ w 100 z 137

przypadkach. Szczegotowe wyniki dla modutu MR i potagczonych modut MR + MNN
przedstawiono w tabeli [Tabela 5].

Preci Bal
Model Macierz pomytek® Accuracy  Recall e k1 alanced

-sion accuracy?®

MR performance

MR

True label

0.4 0.98 0.82 1.00 0.90 0.91

Predicted label

MR+MNN performance

0.98 0.89 1.00 0.94 0.94

+
True label

Predicted label

Tabela 5 Wyniki skutecznosci opracowanej metody znajdowania lotki

Ja wida¢ opracowana metoda w 11% zgubita Sledzong lotke. Dziato si¢ to w dwoch
przypadkach:

1. lotka zostata zgubiona po odbiciu o podtoze,

2. lotka zostata zgubiona, poniewaz poruszata si¢ na tle zawodnika.

Przypadek pierwszy wystepowatl zdecydowanie czesciej. Na rysunkach [Rysunek 20, Rysunek
21] zaprezentowano dwa przypadki btednie wyznaczonej pozycji korka przez traker (zotta
kropka na koncu zo6ttej linii dla przyktadow z prawej strony). Z punktu widzenia celu badan,

$ledzenie lotki po odbiciu o podtoze nie jest konieczne, gdyz opracowana metoda lokalizacji

15 Definicja podana w Sfowniczek pojec punkt 6, strona 93.

16 Sposob wyliczenia miar Accuracy, Recall, Precision, F1, Balanced accuracy podano w Stowniczek poje¢ na
stronie 94
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miejsca upadku lotki w stosunku do linii kortu nie wymaga $ledzenia lotki po jej odbiciu. W
zasadzie mozna by usung¢ z danych takie przypadki i tym samym uzyskac lepsze wyniki (W
zaimplementowanym ostatecznie rozwigzaniu traker przestaje $ledzi¢ lotke po jej odbiciu).
Przypadek drugi wystepowat tylko dla nagran z kamer obserwujacych linie tylng (a tych jest
okoto 1/3). W przypadku linii bocznych zawodnicy zawsze byli na tyle daleko od lotki, ze nigdy

jej nie przestaniali.

Calkowity brak falszywie pozytywnych alarméw (lotki nie byto na nagraniu, a traker jg znalazt)
wynika ze sposobu gromadzenia danych. Nagrania byly rejestrowane tylko podczas realnych
zawodow i tylko wtedy, gdy zawodnik prosit o weryfikacje decyzji s¢dziego — a wtedy lotka
jest dos¢ dlugo w polu widzenia kamery. Sytuacji, gdy na nagraniu nie ma lotki, a jest inny
poruszajacy si¢ obiekt (np. zawodnik) bylo stosunkowo niewiele, a opracowany traker

doskonale sobie z takimi sytuacjami poradzit.

Wyznaczenie w strumieniu wideo kluczowej ramki, w ktorej nastapilo odbicie lotki o
podloze
Aby byla mozliwa ocena, czy lotka upadata w polu gry, czy poza nim, konieczne jest,

znalezienie w strumieniu wideo ramki, w ktorej faktycznie nastgpito odbicie lotki o podtoze.

Autor przeprowadzil szereg eksperymentow w celu opracowania skutecznej metody
wyznaczenia ramki, w ktorej nastgpito odbicie o lotki o podtoze. Eksperymenty rozpocze¢to od
stworzenia prostego estymatora (Model Podstawowy MP), ktory na podstawie tego jak zmienia
sie¢ wielkos¢ konturu reprezentujacego lotke na ramce réznicowej decydowat czy lotka odbita
si¢ od podloza czy nie. Nastgpnie wyliczono szereg innych cech, ktore byly wejsciem do
réznych algorytméw uczenia maszynowego. Jak juz wspomniano wczesniej, istotnym
ograniczeniem jest czas w zwigzku z tym algorytmy, w ktorych przeprowadzane sa
czasochtonne obliczenia nie mogg zosta¢ wykorzystane w docelowej komercyjnej

implementac;ji.

Zbior danych

Do eksperymentow autor przygotowat treningowy oraz walidacyjny zbiér danych sktadajacy
si¢ z nagran zarejestrowanych podczas turniejow badmintona W roéznych halach. Kamery
szaroodcieniowe rejestrowaly obraz z predkoscig od 150 do 200 klatek na sekund¢ (FPS) w
rozdzielczo$ci 800x600 pikseli. W rozdziale 3.1 Gromadzenie danych do eksperymentow
opisano sposob W jaki przygotowano reprezentatywny zbioru danych. Po wydzieleniu z catego

zbioru danych zbioru testowego (nagrania z Katowic 1 Glubczyc) pozostato 11158 probek z
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czego licznos¢ klasy 0 (brak odbicia o podtoze) wynosi 10960, a klasy 1 (obicie o podtoze) —
198. Zbior ten podzielono na treningowy i walidacyjny w stosunku 75:25. Taki podziat
zapewnia, ze zarowno w zbiorze treningowym jak i walidacyjnym sa nagrania z kamer

obserwujacych kazdg linie — koncowe, boczne, serwisowe.

Jak wida¢ dane sa wysoce niezbalansowane stosunek klasy 0 do 1 wynosi 55:1. Dlatego tez do

oceny skuteczno$ci badanych metod zastosowano miare balanced accuracy.

Dane zostaty zaanotowane i oznaczono ramke, w ktorej nastgpito odbicie o ziemie, oraz pozycje
korka. Czasami osoba anotujaca dane miata problem z oceng w ktorej ramce nastapito odbicie
0 kort. Przyczyny byly nastepujace: lotka byta w duzej odlegtosci od kamery, lub lotka dotykata
podtoza przez dwie ramki §lizgajac si¢ po korcie [Rysunek 34 a,b]. Wzigto te niepewno$¢ pod

uwagg podczas oceny skutecznosci algorytmu i wyznaczono doktadno$é stosujgc dwa kryteria:

1) algorytm wyznaczyt moment odbicia w doktadnie tej samej ramce co ground-truth,
2) algorytm wyznaczyt moment odbicia z tolerancjg jednej ramki w stosunku do ground-

truth.

Na rysunku [Rysunek 34] zaprezentowano przyktadowe zestawy ramek, ktore byty w zbiorze

danych wykorzystanym w eksperymentach.
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Rysunek 34 Przyktadowe zestawy kolejnych ramek ze strumienia wideo, ktore znalazly si¢ w zbiorze danych wykorzystanym W
eksperymentach

W momencie, gdy lotka odbija si¢ od podtoza jej predkos$¢ poruszania si¢ gwaltownie maleje.
W przypadku, gdy lotka $lizga si¢ po korcie jej predkos$¢ rowniez maleje, ale nie tak gwaltownie
jak w przypadku odbicia. To czy lotka odbije si¢ od podtoza, czy tez przez chwile przeslizgnie
po nim, zalezy gtownie od uderzenia zawodnika (tego pod jakim katem lotka upada na podtoze)
oraz od wspoétczynnika tarcia maty na ktorej grajg zawodnicy. Certyfikowane maty sportowe
powinny spetnia¢ norm¢ EN 14904, ktora dopuszcza pewien zakres wspotczynnika tarcia jaki
powinna spetnia¢ taka mata (moze si¢ rozni¢ nawet o ponad 30%). Nie bez znaczenia na ten
wspolczynnik ma réwniez zuzycie maty. Ze wzgledu na specyfike gry sytuacje, w ktorych lotka
upada na kort pod maty katem 1 si¢ §lizga, sg stosunkowo rzadkie. W wigkszos$ci przypadkow

lotka odbija si¢ sprezyscie od podtoza.



Model podstawowy

Model podstawowy - MP zbudowano na podstawie obserwacji, ze w momencie odbicia lotka
gwaltownie zmniejsza swoja predko$¢. Obserwujac ramki réznicowe, mozna zauwazyc, ze
liczba pikseli reprezentujgcych réznice pomiedzy kolejnymi ramkami o numerach t-1 i t bedzie

najmniejsza dla ramki w momencie odbicia. Aby uniezalezni¢ si¢ od odlegtosci lotki od kamery

DS(t)
DS(t-1)’

wyznaczono wspotczynnik diff_size_change_ratio D = ktory okresla jak gwattownie

zmienita si¢ liczba pikseli na ramce réznicowej pomigdzy ramkami t-1 i t. DS(t) — oznacza
liczbe pikseli na ramce réznicowej 0 numerze t. Im warto$¢ blizsza zeru tym gwattowniejsza
zmiana predkosci poruszania si¢ lotki. Na rysunku [Rysunek 35] przedstawiono przyktadowsa

sekwencje obrazow zawierajacg odbicie lotki o podtoze oraz warto$ci wspotczynnika D.

1.40 0.75 1.32:0.76 1.20 1.02 0.65 0.56 1.06 0.97

Rysunek 35 Ramki réznicowe przed odbiciem, w momencie odbicia i po odbiciu oraz wartos¢ wspolczynnika D. Czerwong
obwiedniq zaznaczono ramke w ktorej nastgpito odbicie o podtoze.

Na podstawie treningowego zbioru danych wyznaczono wartos¢ progowa wspotczynnika D dla
ktérych miara balanced accuracy miala najwigkszg wartos¢. Osiagnigto warto$¢: — Dpyip =
0.88. Jesli warto$¢ D spetnia rownanie: D < Dy, , t0 model zwraca informacje o tym, ze w
danej ramce nastgpito odbicie o podtoze, w przeciwnym wypadku — brak odbicia. Skutecznos¢

takiego modelu przedstawiono w tabeli [Tabela 6]



Balanced

Model Macierz pomytek Accuracy  Recall Precision  F1
accuracy

RuleBasedEstimator

True label

MP 0.761 0.582 0.053 0.093 0.675
0.4
0.3
predicted label
RuleBasedEstimator
0.7
0
MP z 0.6
tolerancja % os
g ’ 0.772 0.770 0.062 0.123 0.776
jednej =
ramki o

1 0.23 0.77
1

predicted label

Tabela 6 Skutecznosé modelu MP

Jak wida¢ skuteczno$¢ modelu MP nie jest wyjatkowo wysoka (szczegélnie niska jest
precyzja), za to obliczeniowo model ten jest wyjatkowo mato wymagajacy. W celu poprawy
wynikéw, autor podjat dalsze prace badawcze 1 wyliczyt wigcej cech 1 zbadat, ktore z nich sg
najbardziej uzyteczne oraz, ktore ze znanych modeli uczenia maszynowego daja najlepsze
wyniki.

Badanie modeli uczenia maszynowego

Z punktu widzenia modeli uczenia maszynowych, kluczowe jest wyznaczenie takich cech, aby
model mogt na ich podstawie w optymalny sposob dokona¢ klasyfikacji. Duza liczba modeli
opisywanych w literaturze wymaga, aby dane byly zbalansowane. Jesli dane sa
niezbalansowane, to przed treningiem modelu nalezy je odpowiednio zbalansowaé. Metody
balansowania danych mozna podzieli¢ na dwie grupy: powickszania klasy mniejszosciowe;j
(oversampling) i zmniejszania klasy wickszosciowej (undersampling). Do najpopularniejszych
metod balansowania danych nalezg random unersampling, random oversampling, smote, tomek
links, near miss. Autor w ramach badan zweryfikowat skuteczno$¢ wielu modeli wraz r6znymi

metodami balansowania danych. Wszystkie implementacje opisywanych modeli oraz metod
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balansowania danych zostaty pobrane z biblioteki scikit-learn [112]. Wyniki przedstawiono w

tabeli [Tabela 9]. Kolejnym etapem badan bylo sprawdzenie, czy dla modeli, ktére daty

najlepsze wyniki ich wersje dla danych niezbalansowanych dadzg lepsze wyniki. WyniKki tych

eksperymentow przedstawiono w tabeli [Tabela 10].

Wyznaczenie zbioru cech

Cechy zostaty wyliczone na podstawie przetworzonych danych ze strumienia wideo takich jak

wspomniane wczesniej ramki roznicowe i akumulacyjne ramki roznicowe. W tabeli [Tabela 7]

przedstawiono wyznaczone cechy, a na rysunku [Rysunek 36] wizualizacje wybranych cech.

Cecha

Opis

diff_size_change_ratio (D)

Jak bardzo zmienita sig liczba pikseli reprezentujgcych réznice pomiedzy
kolejnymi ramkami ze strumienia wideo. Szczegétowo opisane w
rozdziale Model podstawowy.

angle_change_ratio

Jak zmienit sie kat ktéry tworzy trajektoria poruszajace;j sie lotki z
kat w ramce biezacej

podfozem. Obliczony jako: —
kat w ramce poprzedniej

acc_diff_to_diff_ratio

Obliczane podobnie jak diif_size_change_ratio z tg rdznicg, ze zrédtem
danych jest akumulowana ramka réznicowa, a nie ramka rdznicowa

dist_travelled

W pikselach euklidesowa odlegtos$¢ jakg pokonat korek lotki w czasie %.

Czyli odlegtos¢ pomiedzy pozycjg korka w ramce n a ramce poprzedniej —
n-1.

prev_3_frames_dist_travelled

W pikselach euklidesowa odlegto$¢ pomiedzy pozycjg korka w ramce
biezacej: n, a ramce o 3 wczesniejszej: n-3.

local_min_from_3_points

Ta wartos¢ mowi jak bardzo zmienia sie wartos¢ diff_size_change_ratio
na przestrzeni 3 ramek. Obliczona jako: (prev_size_change_ratio -
diff_size_change_ratio) + (next_diff_size_change_ratio -
diff_size_change_ratio),

gdzie:

prev_size_change_ratio oznacza wyliczone diff_size_change_ratio w
ramce n-1, a next_diff_size_change_ratio oznacza wyliczone
diff_size_change_ratio w ramce n+1

local_min

Wartos¢ bedgca sumg diff_size_change_ratio dla kolejnych ramek, dla
ktérych diff_size_change_ratio maleje. Mozna to traktowac jako swego
rodzaju wartos¢ gradientu spadku diff_size_change_ratio. Algorytm

obliczenia tej cechy reprezentuje ponizszy pseudo kod:
local_min = 0, i=current_frame_index -1
prev_size_change_ratio = diff_size_change_ratio for frame i
while prev_size_change_ratio > diff_size_change_ratio:
local_min += (prev_size_change_ratio - diff_size_change_ratio)
i=i-1
prev_size_change_ratio = diff_size_change_ratio for frame i

i=current_frame_index +1
next_diff_size_change_ratio = diff_size_change_ratio for frame i
while next_diff_size_change_ratio > diff_size_change_ratio:
local_min += (next_diff_size_change_ratio - diff_size_change_ratio)
i=i+1
next_diff_size_change_ratio = diff_size_change_ratio for frame i

aspect_ratio

height

Obliczone jako: —
width

height_change_ratio

height
height dla ramki poprzedniej

Obliczone jako:

width_change_ratio

width
width dla ramki poprzedniej

Obliczone jako:
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dist_travelled

dist_travelled_wrt_width Obliczone jako: -
width

prev_3_frames_dist_travelled

prev_3_frames_dist_travelled_wrt_width  Obliczone jako: h
Wi

Tabela 7 Cechy oraz sposéb ich wyznaczenia. Pogrubiong czcionkq zaznaczono te, ktére ostatecznie zostaly wybrane.

Rysunek 36 Sposob wyznaczenia cech width, height, pozycji korka i obszaru zainteresowania. Od lewej — akumulacyjna
ramka roznicowa, oryginalna ramka ze strumienia wideo, ramka réznicowa. ROI jest to obszar zdefiniowany jako prostokqt
0 boku 128 pikseli o srodku w punkcie (c_x, c_y) gdzie (c_x, c¢_y) jest pozycjg korka zwrocong przez traker.

Z wykorzystaniem nadzorowanej metody rekursywnego usuwania cech dokonano wyboru
cech. Przeprowadzono rowniez 10 eksperymentéw z réznymi zestawami cech. Wyniki tych
eksperymentow dla klasyfikatora BalancedRandomForrest zaprezentowano w tabeli [Tabela
8]. Dla pozostatych testowanych klasyfikatorow wyniki byty podobne. Zestaw cech nr 8 okazat
si¢ najlepszy. Dla wybranego zestawu cech policzono ich korelacje [Rysunek 37] oraz wptyw

jaki maja na model [Rysunek 38].

Balanced
accuracy

Nr Zestaw cech

diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled,
prev_3_frames_dist_travelled, dist_trajectory_line_from_prev_3_frames,
0 0.843

local_min,local_min_from_3_points,aspect_ratio,height_change_ratio,width_change_ratio,dist_tr

avelled_wrt_width, prev_3_frames_dist_travelled_wrt_width

diff_size_change_ratio, acc_diff_to_diff_ratio, dist_travelled,prev_3_frames_dist_travelled,
1 0.838

local_min, local_min_from_3_points,aspect_ratio, height_change_ratio, width_change_ratio

diff_size_change_ratio, acc_diff_to_diff_ratio, dist_travelled,prev_3_frames_dist_travelled,
2 0.769

local_min,aspect_ratio, height_change_ratio, width_change_ratio
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diff_size_change_ratio, acc_diff_to_diff_ratio,

dist_travelled_wrt_width,prev_3_frames_dist_travelled, local_min,

3 0.846
local_min_from_3_points,aspect_ratio, height_change_ratio,
width_change_ratio,prev_3_frames_dist_travelled_wrt_width
diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled,

4 prev_3_frames_dist_travelled, 0.840
dist_trajectory_line_from_prev_3_frames,local_min,local_min_from_3_points
diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled,

5 0.863
prev_3_frames_dist_travelled, local_min,local_min_from_3_points

6 diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled, 0.850
prev_3_frames_dist_travelled, local_min,local_min_from_3_points,aspect_ratio

7 diff_size_change_ratio, angle_change_ratio,acc_diff to_diff_ratio, dist_travelled, 0.842
prev_3_frames_dist_travelled, local_min,local_min_from_3_points,height_change_ratio
diff_size_change_ratio, angle_change_ratio,acc_diff_to_diff_ratio, dist_travelled_wrt_width,

8 prev_3_frames_dist_travelled_wrt_width, 0.851
local_min,local_min_from_3_points,height_change_ratio
diff_size_change_ratio, acc_diff_to_diff_ratio, dist_travelled_wrt_width,

9 0.849

prev_3_frames_dist_travelled_wrt_width,

local_min,local_min_from_3_points,height_change_ratio

Tabela 8 Poréownanie miar balanced accuracy dla réznych zestawow cech modelu
BalancedRandomForestClassifier(n_estimators= 226, criterion= "entropy", max_depth= 11, max_features= 0.3,
min_samples_leaf=1, sampling_strategy= "not minority", bootstrap= True, oob_score= True, replacement= False,
random_state=0, n_jobs=-1)

diff_size_change_ratio - 1

angle_change_ratio

acc_diff_to_diff_ratio SEsNlVEE}

dist_travelled_wrt_width 0.085

prev_3_frames_dist_travelled_wrt_width 0.038

local_min Ry}

local_min_from_3_points

height_change_ratio -JOGEEE

ge_ratio

diff_size_chan:

Rysunek 37 Wspoiczynnik korelacji Pearson-a dla wybranych cech
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diff_size_change_ratio

height_change_ratio
local_min_from_3_points
dist_travelled_wrt_width
prev_3_frames_dist_travelled_wrt_width
acc_diff to diff ratio

local_min
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mean(|SHAP value|) (average impact on moedel output magnitude)

Rysunek 38 Wplhyw poszczegdlnych cech na wynik klasyfikacji dla modelu BalancedRandomForest

Wyniki

W pierwszej kolejnosci, autor zbadat jakie wyniki dla wszystkich cech daja popularne modele
klasyfikacji. Ze wzgledu na niezbalansowany zbior danych miary F1, Precision, Recall sg
obliczone jako $rednia wazona uwzgledniajgca licznos¢ klasy 0 i 1. Szczegotowo wyniki
przedstawiono w tabeli [Tabela 9]. Do dalszych eksperymentoéw zostaty wybrane modele, ktore
daty najlepsze rezultaty. Kolejne testy zostaly przeprowadzone dla tych modeli, ktore sg
przystosowane do niezbalansowanych danych - BalancedRandomForest oraz
BalancedBaggingClassifier — [Tabela 10]. Ostatnim krokiem byla optymalizacja
hyperparametrow zaréwno dla wersji z doktadnym rozpoznaniem przez klasyfikator ramki, w
ktorej nastapito odbicie jak i1 z rozpoznaniem momentu odbicia z tolerancja jednej ramki.
Wyznaczone optymalne warto$ci hyperparametrow przedstawiono w tabelach [Tabela 11]
(doktadny moment odbicia) oraz [Tabela 14] (moment odbicia z tolerancja jednej ramki).
Ostateczne wyniki przedstawiono w tabeli [Tabela 12] (doktadny moment odbicia) oraz [ Tabela
15] (moment odbicia z tolerancja jednej ramki). Wykonane eksperymenty polegajace na
wybraniu najwazniejszych cech oraz optymalizacji parametrow klasyfikatora wyznaczajacego
doktadny momentu odbicia lotki o podtoze pozwolity poprawi¢ wynik z 0.843 do 0.873 dla
miary ballanced accuracy i modelu BalancedRandomForest. Podobnie dla modelu
BalancedBaggingClassifier — optymalizacja hyperparmetrow pozwolita na poprawe miary
ballanced accuracy z 0.849 do 0.878. Podsumowujac wynik przeprowadzonych
eksperymentoéw, zamiast balansowa¢ dane przed treningiem modelu, lepiej jest zastosowac
model, ktory sam podczas treningu na podstawie licznosci klas dokona odpowiedniej strategii
samplowania danych oraz przydzielania odpowiednich wag. Przyktadowo, dla modelu

RandomForrest po zbalansowaniu danych uzyskano ballanced accuracy na poziomie 0.781, a
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dla BallancedRandomForest [113], gdzie kazde drzewo ma odpowiednio zbalansowang probke

danych- 0.843. Czyli 0 6% lepszy wynik.

Warto nadmieni¢, ze wybranie najlepszych cech oraz optymalizacja hyperparametrow modeli

pozwolily poprawi¢ wynik o 3%.

Klasyfikator Metoda balansowania F1 Precision Recall Accuracy Bal acc
RandomOverSampler 0,033 0,017 0,907 0,144 0,519
ADASYN 0,034 0,017 0,907 0,162 0,529
NearMiss 0,031 0,016 0,481 0,507 0,495
GaussianNB SMOTE 0,034 0,017 0,907 0,168 0,532
AIIKNN 0,036 0,018 0,944 0,178 0,555
RandomUnderSampler 0,036 0,018 0,944 0,172 0,552
TomekLinks 0,034 0,017 0,907 0,168 0,531
RandomOverSampler 0,217 0,263 0,185 0,978 0,588
ADASYN 0,172 0,116 0,333 0,948 0,646
NearMiss 0,041 0,021 0,870 0,350 0,606
XGBClassifier SMOTE 0,197 0,137 0,352 0,954 0,658
AIIKNN 0,274 0,317 0,241 0,979 0,616
RandomUnderSampler 0,100 0,054 0,796 0,770 0,783
TomekLinks 0,141 0,294 0,093 0,982 0,544
RandomOverSampler 0,202 0,185 0,222 0,972 0,603
ADASYN 0,177 0,110 0,463 0,931 0,701
NearMiss 0,038 0,019 0,815 0,326 0,567
DecisionTree SMOTE 0,174 0,107 0,463 0,929 0,700
AIIKNN 0,123 0,092 0,185 0,957 0,578
RandomUnderSampler 0,076 0,040 0,704 0,723 0,713
TomekLinks 0,137 0,117 0,167 0,966 0,573
RandomOverSampler 0,092 0,273 0,056 0,982 0,527
ADASYN 0,274 0,217 0,370 0,968 0,674
NearMiss 0,043 0,022 0,944 0,314 0,624
RandomForest SMOTE 0,257 0,209 0,333 0,969 0,656
AIIKNN 0,034 0,250 0,019 0,983 0,509
RandomUnderSampler 0,099 0,053 0,796 0,766 0,781
TomekLinks 0,000 0,000 0,000 0,983 0,499
RandomOverSampler 0,270 0,236 0,315 0,973 0,649
ADASYN 0,196 0,123 0,481 0,936 0,713
NearMiss 0,041 0,021 0,889 0,322 0,601
HistGradientBoost SMOTE 0,224 0,143 0,519 0,942 0,734
AIIKNN 0,141 0,194 0,111 0,978 0,552
RandomUnderSampler 0,105 0,056 0,815 0,776 0,795
TomekLinks 0,061 0,167 0,037 0,981 0,517
RandomOverSampler 0,205 0,265 0,167 0,979 0,580
BaggingClassifier ADASYN 0,209 0,140 0,407 0,950 0,683
NearMiss 0,044 0,023 0,870 0,396 0,629
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SMOTE 0,169 0,116 0,315 0,950 0,638

AIIKNN 0,086 0,188 0,056 0,981 0,526
RandomUnderSampler 0,097 0,052 0,759 0,773 0,766
TomekLinks 0,065 0,250 0,037 0,983 0,518
RandomOverSampler 0,036 0,018 0,926 0,201 0,557
ADASYN 0,036 0,018 0,926 0,205 0,560
NearMiss 0,027 0,014 0,333 0,616 0,477
LinearSVC SMOTE 0,036 0,019 0,926 0,208 0,561
AlIKNN 0,000 0,000 0,000 0,984 0,500
RandomUnderSampler 0,040 0,021 0,352 0,730 0,544
TomekLinks 0,000 0,000 0,000 0,984 0,500
RandomOverSampler 0,033 0,017 0,796 0,235 0,511
ADASYN 0,032 0,016 0,796 0,221 0,504
NuSvC NearMiss 0,034 0,018 0,500 0,539 0,520
SMOTE 0,032 0,016 0,796 0,222 0,505
RandomUnderSampler 0,033 0,017 0,963 0,103 0,526

Tabela 9 Poréwnanie wynikow réznych modeli uczenia maszynowego wraz z uwzglednieniem metod balansowania danych

Balanced accuracy

Klasyfikator F1 Precision Recall Accuracy - wybrane cechy
BalancedBaggingClassifier 0.332 0.206 0.840 0.857 0.849
BalancedRandomForestClassifier 0.257 0.149 0.920 0.776 0.843
cotmator metGragientpoostingClassiier 0375 0204 080 0860 0831
Z tolerancjg jednej ramki

BalancedBaggingClassifier 0.415 0.265 0.960 0.886 0.921
BalancedRandomForestClassifier 0.296 0.175 0.960 0.807 0.880
BalancedBaggingClassifier 0.412 0265  0.920 0.889 0.904

estimator=HistGradientBoostingClassifier

Tabela 10 Poréwnanie wynikow 3 klasyfikatorow przystosowanych do niezbalansowanych danych dla wybranego zestawu
cech

Wyznaczone hyperparametry dla modeli

BalancedBaggingClassifier(n_estimators=47, max_features=0.7547689530533495, bootstrap=True,
replacement=True, sampling_strategy='not minority', random_state=0, n_jobs=-1)

BalancedRandomForestClassifier(n_estimators= 124, criterion= 'entropy', max_depth= 14, max_features=
'log2', min_samples_leaf= 1, sampling_strategy= 'all’, bootstrap= False, oob_score= False, replacement=
False, random_state=0, n_jobs=-1)
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BalancedBaggingClassifier(estimator=HistGradientBoostingClassifier(random_state=0,
class_weight="'balanced’,
learning_rate=0.05894441800895756,
max_iter=355,
min_samples_leaf=10),

n_estimators=249,
sampling_strategy="all",
random_state=0, n_jobs=-1)

Tabela 11 Wartosci hyperparametrow dla dokiadnej klasyfikacji momentu odbicia lotki o podioze

Balanced
Klasyfikator F1 Precision Recall Accuracy accuracy —
wybrane cechy

BalancedBaggingClassifier 0.377 0.240 0.88 0.877 0.878

BalancedRandomForestClassifier 0.296 0.176 0.94 0.811 0.873

BalancedBaggingClassifier

estimator=HistGradientBoostingClassifier 0.365 0.233 0.84 0.876 0.859
Tolerancja jednej ramki

BalancedBaggingClassifier 0.456 0.301 0.94 0.905 0.922
BalancedRandomForestClassifier 0.336 0.204 0.96 0.840 0.897
BalancedBaggingClassifier 0.468  0.309 0.96  0.908 0.932

estimator=HistGradientBoostingClassifier

Tabela 12 Poréwnanie wynikow klasyfikatorow po optymalizacji parametrow dla dokladnej klasyfikacji momentu odbicia o
podioze

Macierze pomytek — wartosci hyperparametréw zoptymalizowane dla klasyfikatoréow wyznaczajacych
doktadny moment odbicia o podtoze

Doktadny moment odbicia Moment odbicia z doktadnoscig do jednej ramki

BalancedBaggingClassifier

BalancedBaggingClassifier BalancedBaggingClassifier adjusted
0.9
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0.7 07
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o [
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y 0.5 Y .
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Tabela 13 Macierze pomylek dla testowanych klasyfikatoréw po optymalizacji hyperparametrow przedstawionej w tabeli []

Wyznaczone hyperparametry dla modeli

BalancedBaggingClassifier(

n_estimators=156, max_features=0.8532097379055883, bootstrap=True, replacement=True,
sampling_strategy="all', random_state=0, n_jobs=-1),

BalancedRandompForestClassifier(

n_estimators= 19, criterion='entropy', max_depth= 12, max_features= None, min_samples_leaf=1,
sampling_strategy= "all", bootstrap= False, oob_score= False, replacement= True, random_state=0, n_jobs=-

1)
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BalancedBaggingClassifier(estimator=HistGradientBoostingClassifier(random_state=0,
class_weight='balanced',
learning_rate=0.10406405953447745,
max_iter=438,
min_samples_leaf=10),

n_estimators=198,
sampling_strategy="all",
random_state=0, n_jobs=-1)

Tabela 14 Wyznaczone hyperparametry dla klasyfikatorow z tolerancjq jednej ramki

Classifier F1 Precision Recall Accuracy Balanced
accuracy

BalancedBaggingClassifier 0.434 0.304 0.76 0.916 0.841

BalancedRandomForestClassifier 0.369 0.234 0.86 0.876 0.868

BalancedBaggingClassifier

estimator=HistGradientBoostingClassifier 0.362 0.232 0.82 0.878 0.850

Tolerancja jednej ramki

BalancedRandomForestClassifier 0.602 0.443 0.94 0.947 0.944

BalancedBaggingClassifier 0.459 0.301 0.96 0.904 0.931

BalancedBaggingClassifier 0.475 0.315 0.96 0.910 0.934

estimator=HistGradientBoostingClassifier

Tabela 15 Poréwnanie wynikéw klasyfikatoréw po optymalizacji parametréw dla klasyfikacji momentu odbicia o podioze z
tolerancjq jednej ramki

Macierze pomytek — wartosci hyperparametréw zoptymalizowane dla klasyfikatoréw wyznaczajgcych
moment odbicia o podtoze z tolerancjg jednej ramki

Doktadny moment odbicia Moment odbicia z doktadnoscig do jednej ramki

BalancedBaggingClassifier

True label

BalancedBaggingClassifier

BalancedBaggingClassifier adjusted

0.9
0.9
0.8
0.8
0.7 0.7
0.6 0.6
u
K
0.5 ° 0.5
=
=
0.4 0.4
0.3 0.3
0.2 0.2
01 0.1
Predicted label Predicted label
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BalancedRandomForestClassifier

BalancedRandomForestClassifier BalancedRandomForestClassifier adjusted

0.8
0.8
0.7
0.6
5 — 0.6
L [N
= i
v 03y
= =
= = 0.4
0.4 '
0.3
0.2
0.2
Predicted label Predicted label
BalancedBaggingClassifier estimator=HistGradientBoostingClassifier
BalancedBaggingClassifier BalancedBaggingClassifier adjusted
0.8
0.8

True label
True label

Predicted label Predicted label

Tabela 16 Macierze pomylek klasyfikatorow po optymalizacji hyperparametrow dla klasyfikacji momentu odbicia o podtoze 7
tolerancjg jednej ramki

Model BalancedRandomForest uzyskat lepszy wynik od BalancedBaggingClassifier, dla
klasyfikacji z tolerancja jednej ramki i ten model wykorzystano w koncowym rozwigzaniu. Jesli
chodzi o wydajno$¢ obliczeniowa, to z wykorzystaniem CPU Intel i9 model
BalancedRandomForest $rednio na predykcje potrzebowat 0.024 ms, a model
BlancedBaggingClassifier 0.394 ms

Wyniki - dyskusja

Dane wykorzystane do trenowania modeli pochodza z modutu §ledzenia i rozpoznawania lotki.
Modut ten zwraca pozycj¢ korka do badmintona z pewna doktadnoscia, Z tego wzgledu
porownanie pozycji korka pomiedzy dwiema sasiadujgcymi ramkami wideo nie jest

wystarczajacym kryterium do oceny czy nastgpito odbicie o podtoze, czy tez nie. Opisany na
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poczatku tego rozdziatu Model Podstawowy ma niezadowalajacg skutecznos¢ z tego powodu,
ze na liczbe pikseli w ramce réznicowej oprocz predkosci poruszania si¢ lotki ma wpltyw
rowniez ruch wirowy lotki oraz cien, ktory rzuca na podtoze. Aby osiagnaé wyzsza
skutecznos¢, autor wyznaczyt wiele cech, ktore pozwolity na poprawienie skuteczno$ci modelu
Z 67% do 88% (ballanced accuracy). Ze wzgledu na to, ze podczas anotacji momentu odbicia
osoba anotujgca nie zawsze byla pewna czy odbicie nastgpito w zaznaczonej przez nig ramce
czy poprzedniej/nastepnej to zweryfikowano tez skuteczno$¢ modelu z tolerancja jednej ramki.
Z punktu widzenia catoSci rozwigzania pomytka modelu w wyznaczeniu momentu odbicia lotki
o podtoze o jedng ramke jest istotna tylko wtedy, gdy lotka poruszata si¢ przed odbiciem bardzo
ptasko i szybko oraz odbita si¢ bardzo blisko krawedzi linii. W pozostatych przypadkach
doktadne wyznaczenie pozycji korka (opisane w dalszej czesci rozprawy) w stosunku do linii
kortu nie bedzie obarczone na tyle istotnym btedem, aby odpowiedz systemu czy lotka upadta
w korcie czy poza nim byla niezgodna z prawda. Zezwalajac na tolerancje jednej ramki

skuteczno$¢ zaproponowanego rozwiazania wzrasta do 94% dla miary ballanced accuracy.

Autor przeanalizowat przypadki, dla ktorych model pomylit si¢ w wyznaczeniu kluczowej

ramki o wigcej niz 2 ramki. Zasadniczo btgdne przypadki mozna podzieli¢ na dwie grupy:

1) Pomytka bardzo duza - kilkanascie, kilkadziesigt ramek.

2) Pomytka niewielka — kilka ramek.

Przypadkow z grupy pierwszej jest kilka. Sg to sytuacje, w ktorych model jako kluczowa ramke
wyznaczyl t¢ w ktorej nastgpito drugie odbicie lotki o podioze. Jesli chodzi o druga grupe, to
pomytki sa spowodowane cieniem rzucanym przez lotke, ktory moze by¢ widoczny na ramce
réznicowej [Rysunek 36] co ma wplyw na warto$¢ cechy diff_size_change_ratio. W tej grupie
znajdujg sie tez specyficzne sekwencje wideo, na ktorych zarejestrowano uderzenie lotki o
parkiet po ptaskim uderzeniu smecz do bocznej linii kortu. W takich przypadkach cechy
angle_change_ratio, height_change_ratio, dist_travelled_wrt_width maja podobne wartosci,
jak wtedy gdy lotka leci nad kortem. Autor nie eksplorowatl innych rozwigzan, ktore
pozwolityby na poprawe skutecznosci opracowanego modelu w tym przypadku z

nastgpujacych powodow:

a) problem wystepuje tylko w opisanym specyficznym przypadku,
b) pomytka o kilka ramek z punktu widzenia decyzji, czy bylo pole, czy aut ma znaczenie
tylko, gdy lotka po uderzeniu leci ptasko i po przekatne;j,
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C) ze statystyk zebranych przez autora wynika, ze opisanych powyzej sytuacji jest ponizej
6%.

Autor ma $wiadomo$¢, ze jest tu miejsce na poprawe i by¢ moze zastosowanie Sieci

neuronowych pozwolitoby na osiagni¢cie lepszych rezultatow.

Jesli chodzi o poprawe skutecznosci w przypadku, gdy model zwrocit ramke w ktorej nastgpito
drugie odbicie to autor proponuje nast¢pujaca modyfikacje majaca na celu obsluge

wspomnianego scenariusza.

Jesli w danej sekwencji model zwrécil prawdopodobienstwo odbicia o podtoze wigksze niz
50% dla kilku ramek, to nie jest zwracana ramka z najwyzszym prawdopodobienstwem, tylko
dokonywana jest korekta na tej zasadzie, ze promowane sg odbicia wezesniejsze i te, ktore byty
blizej linii kortu. Niestety ze wzgledu na brak czasu autor nie mogt doktadnie zbadaé

przedstawionej koncepcji.

Autor podjat natomiast probe usuwania cienia rzucanego przez lotke. Metoda polegata na
zbadaniu jak zmniejsza si¢ jasnos¢ pikseli w okreSlonym obszarze zainteresowan. Niestety
rezultaty jakie zostaly uzyskane nie bylty zadowalajace, a poprawa ich wymagataby ilosci pracy

niewspotmiernej do przewidywanych korzysci.

3.4. Wyznaczenie miejsca odbicia si¢ lotki o ziemi¢ w stosunku do referencyjnych
linii kortu

Aby oceni¢, czy lotka upadta w polu gry, czy poza nim konieczne jest wyznaczenie na obrazie

obszaru pola gry oraz miejsca upadku lotki. Autor nie zajmowat si¢ automatycznym

wyznaczeniem obszaru pola gry. Referencyjne linie kortu zostaty wyznaczone manualnie.

W celu wyznaczenia miejsca odbicia lotki od podtoza koniecznie jest precyzyjne wyznaczenie
korka lotki. Ze wzgledu swoj ksztalt lotka zawsze odbija si¢ od podtoza korkiem, wigc do
podjecia decyzji pole/aut nie jest konieczna segmentacja catej lotki. Segmentacja catej lotki jest

problematyczna z kilku powodow:

e Nawet w momencie odbicia lotki od podtoza lotka jest delikatnie rozmyta, poniewaz
uktad pior lotki powoduje, ze lotka w trakcie lotu wiruje. Z tego powodu lotka nie ma
ostrych krawedzi i1 wigkszo$¢ popularnych metod ma problemy z precyzyjna
segmentacjq.

e Bialy korek i biate piora mogg zlewac si¢ z bialg linig kortu — patrz [Rysunek 39]. Warto

zauwazy¢, ze najcze$ciej zawodnik zada weryfikacji decyzji sedziego liniowego,
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wiasnie wtedy gdy lotka upada w poblizu linii (czyli jest widoczna na jej tle). Warto
zaznaczyC, ze tego problemu nie ma w tenisie gdzie linie sa biale, a pitka

fluorescencyjnie zotta.

Autor sprawdzit jak z segmentacja lotki radzg sobie klasyczne algorytmy takie algorytmy jak
grabCut [90] oraz algorytmy wykorzystujace sieci neuronowe takie jak Segment Anything
Model [50].

Na rysunku [Rysunek 39] przedstawiono wynik segmentacji lotki z wykorzystaniem algorytmu
grabCut.

Na rysunkach [Rysunek 40, Rysunek 43] przedstawiono wynik dziatania Segment Anything

Model — SAM, uznawanego za state-of-the-art.
Badajac wyniki zwracane przez SAM dokonano dwoch rodzajow eksperymentow:

1. Algorytmowi SAM doktadnie wskazano korek od lotki (btekitna kropka) i poproszono
0 jej segmentacje — [Rysunek 40]. W wyniku otrzymano wysegmentowang lotke -
[Rysunek 41].

2. Wskazujac obszar (biaty prostokat), w ktorym nalezy dokona¢ segmentacji (lotka jest
w centrum obszaru zainteresowan) — [Rysunek 42] ) jako wynik segmentacji otrzymano

to co jest widoczne na rysunku [Rysunek 43].

Algorytm $ledzacy lotke wyznacza obszar zainteresowan, w ktorym jest lotka, wigc podanie
doktadnej pozycji korka lotki algorytmowi Segment Anything Model jest niemozliwe i W
praktyce nie da si¢ uzyska¢ wyniku przedstawionego na rysunku [Rysunek 41], mozliwe jest
uzyskanie wyniku zaprezentowanego na [Rysunek 43]. Ze wzgledu na niezadowalajace wyniki
uzyskane autor zdecydowal si¢ na opracowanie wlasnego innowacyjnego algorytmu
wyznaczania korka lotki do badmintona a szczegdtowe porownanie proponowanej przez autora
metody z SAM przedstawiono w rozdziale Poréwnanie zaproponowanej metody z Segment

Anything Model na stronie 118.

W przypadkach, gdy lotka jest w duzej odlegtosci od linii algorytm SAM radzi sobie dos¢
dobrze [Rysunek 44, Rysunek 45], jednakze takie sytuacje, gdy zawodnik prosi o weryfikacje
zdarzaja si¢ niezmiernie rzadko (Wtedy jest to taktyczna zagrywka zawodnika, aby zyska¢ czas

i wybi¢ przeciwnika z rytmu meczowego).
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Rysunek 39 Lotka na tle bialej linii i wynik segmentacji algorytmem GrabCut

Rysunek 40 Segmentacja lotki przez algorytm Segment Anything
Model poprzez precyzyjne wskazanie (bigkitny punkt) Rysunek 41 Wynik segmentacji
segmentowanego obiektu lotki przez algorytm SAM



Rysunek 42 Segmentacja lotki przez Segment Anything Model Rysunek 43 Wynik segmentacji
poprzez wskazanie obszaru w ktorym segmentowacé obiekt lotki przez algorytm SAM

Rysunek 44 Segmentacja lotki bedgcej daleko poza kortem przez
algorytm SAM poprzez wskazanie obszaru w ktorym segmentowaé Rysunek 45 Wynik segmentacji
obiekt lotki przez SAM

Algorytm wyznaczania korka lotki i miejsca odbicia o podloze
Opracowany przez autora algorytm zaktada, ze znana jest trajektoria lotki i przyblizona pozycja

korka lotki oraz szerokos$¢ lotki w pikselach. Te dane dostarczane sg przez algorytm §ledzenia
lotki opisany w rozdziale Detekcja i sledzenie lotki.
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Jak juz przedstawiono wczesniej, segmentacja rozmazanej biatej lotki, ktora znajduje si¢ na tle
biatej linii jest trudna, dlatego tez autor zdecydowat si¢ na znalezienie ciemnego paska, ktory
odcina biaty korek od biatych pior, a nastgpnie wyliczenie okregu odpowiadajagcemu korkowi.
Przepisy nie wymagajg, aby lotka posiadata taki pasek, ale na rynku niec ma lotek, ktore nie
mialyby tego paska. Kolor tego paska jest zawsze ciemny — najczgsciej czarny. Ten czarny
pasek jest cienkg tasma, ktora jest konieczna ze wzgledow produkcyjnych (poprawia trwatosé
lotki), pasek ten tez utatwia sedziom serwisowym oceng czy podczas serwisu zawodnik uderzyt

lotk¢ w korek, czy w piora (uderzenie w pidra podczas serwisu jest bledem [115]).

Poniewaz ten pasek okala korek dookota, to ruch wirowy lotki nie ma wptywu na rozmazanie
jego dolnej i gornej krawedzi. Ruch postepujacy lotki powoduje jego rozmazanie, ale w
momencie odbicia lotka praktycznie zatrzymuje si¢ i rozmycie nie jest duze. Dlatego tez im
wigcej klatek na sekundg rejestruje kamera tym lepiej. Dane, dla ktorych przeprowadzano
eksperymenty zostaty pozyskane z kamer pracujacych z predkosciami od 150 do 200 klatek na
sekunde.

Na rysunku [Rysunek 46] przedstawiono wymiary lotki okre§lone przepisami gry [115].
Przepisy dopuszczaja pewna dowolnos¢, ale z pomiardow przeprowadzone przez autora wynika,

ze wszystkie lotki turniejowe (Yonex, Victor) maja $rednic¢ korka 26mm.
W celu wyliczenia miejsca styku lotki z podtozem przejeto ze:

e kamera jest ustawiona na wprost linii prostopadle do podtoza,

e Srednica korka wynosi 26mm,

e Srednica lotki w najszerszym miejscu — koncowki pior wynosi 65 mm,
e Wysokos$¢ korka — 25 mm,

e Wwysokos$¢ paska okalajacego korek —2 mm,

e $rednica obszaru styku korka lotki z podtozem — Y% §rednicy korka — 13 mm.
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Rysunek 46 Wymiary lotki okreslone przez przepisy'’

Wyznaczenie miejsca styku lotki z podlozem

Miejsce styku lotki z podtozem zwizualizowano na rysunku [Rysunek 47]. Algorytm

wyznaczajacy obszar styku lotki z podtozem opiera si¢ prostych operacjach matematycznych i

zostat opisany W punktach, ponize;.

1.

Algorytm na wejSciu otrzymuje rownanie prostej L, ktora jest wyznaczona przez traker
na postawie trajektorii lotki oraz szerokos¢ lotki w pikselach (sl).

Niech punkt P oznacza punkt na prostej L, lezacy na dalszej od korka krawedzi czarnego
paska [Rysunek 46, Rysunek 47]. Algorytm wyznaczenia punktu P jest szczegdtowo
opisany w dalszej cz¢sci - Wyznaczenie punktu P.

Niech okrag 0 oznacza okrag wpisany w korek, a punkt O srodek okregu. Punkt O lezy
na prostej L w odlegtosci r = 13mm (potowa $rednicy korka) od punktu P.

Niech linia S oznacza lini¢ wyznaczajacg podtoze kortu. Linia S jest prostopadta do
prawej krawedzi obrazu.

Wyznaczany jest trojkat rownoboczny o wierzchotkach (O, S1, S2), ktoérego podstawa

jest na linii S.

17 7rodto: https://www.dimensions.com/element/badminton-shuttlecock
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6. Na linii prostopadtej do linii S i przechodzacej przez punkt O wyznaczany jest punkt
SO, ktory lezy na wysokosci trojkata rownobocznego na srodku jego podstawy w

odlegtosci \/2_§ r od punktu O
7. Majac punkty O, SO wyznaczane sg pozostale wspolrzgdne wierzchotkéw trojkata

réwnobocznego — S1 1 S2.

Punkty S1 i S2 wyznaczajg odcinek, ktory reprezentuje obszar styku lotki z podtozem. W
zalezno$ci od obserwowanej przez kamerg linii, potozenie punktu S1 lub S2 determinuje czy
lotka upadta w polu czy poza nim. Jezeli kamera patrzy na lini¢ tylng, bedzie to punkt S2, jesli

na lini¢ boczng prawa, bedzie to punkt S1.

Kierunek poruszania sie lotki - trajektoria
Prosta L

sl - Szerokos¢ lotki

Punkt P lezgcy w osi lotki na prostej L
wyznaczany przez algorytm,

Srodek okregu O o promieniu r= 13 mm

Obszar styku lotki z
podiozem o dtugoscir

Pozycja korka zwrécona
przez traker

Podtloze

Punkty S1iS2 wyznaczajgce obszar styku
lotki z podfozem

Punkty k1 ik2
wyznaczajgce odcniek M

o diugosci 2*s|

Rysunek 47 Wizualizacja metody wyznaczania obszaru styku lotki z podlozem
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W zalezno$ci od obserwowanej przez kamere linii mozna wyznaczy¢ dwie reprezentatywne

grupy upadku lotki:

e Grupa 1 — lotka upada w poblizu linii bocznej - [Rysunek 48]

e Grupa 2 — lotka upada w poblizu linii tylnej lub serwisowej — [Rysunek 49].

Jak wida¢, w zaleznosci od grupy, rzut lotki na ptaszczyzne obrazu nieznacznie si¢ roézni.

Najbardziej jest to widoczne w przypadku uderzenia net kill [Rysunek 30].

Rysunek 48 Lotka upadajgca w poblizu linii bocznej Rysunek 49 Lotka upadajgca w poblizu linii koricowej

Na rysunku [Rysunek 47] widoczna jest sytuacja, gdy kamera patrzy na lini¢ koncows. Wtedy
lotka jest prostopadta do kamery i nie ma skrotu perspektywicznego. W przypadku kamery
patrzacej na linie boczne, sytuacja jest inna. Skrot perspektywiczny powoduje, ze po
wyznaczeniu punktu P powinniSmy wyznaczy¢ elipse, a nie okrag 0, aby wyznaczy¢ punkty S1
i S2. Autor celowo nie wyznacza elipsy tylko okrag, gdyz ze wzgledu na niewielki rozmiar
korka od lotki oraz duzg odlegto$¢ kamery od lotki w stosunku do jej rozmiaru, wyznaczona

elipsa i tak bytaby zblizona do okreggu.
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Wyznaczajac okrag, a nie elips¢ punkty wyznaczajace obszar styku lotki z podiozem beda
przesunigte w kierunku pior. [Rysunek 50] obrazuje sytuacje w ktorej lotka po uderzeniu smecz
po prostej upada w poblizu linii. Prawidtowe punkty wyznaczajace obszar styku to S1 i S2.
Opisana metoda wyznaczy punkty Q1 i Q2. Nalezy jednak zwroci¢ uwagg, ze dla oceny czy
byto pole czy aut istotna jest odlegtos¢ punktu Q1 od linii - na rysunku oznaczona jako d2 (dla
prawidlowo wyznaczonego punktu S1 odlegtos¢ od linii to d1). W zwigzku z tym, ze kamera
jest ustawiona tak, iz patrzy na boczng linie na wprost, to odlegtosci d1 i d2 sg praktycznie takie
same. Autor postanowit zaakceptowac ten blad, poniewaz w porownaniu z wielkoscig btedu
jaki moze powodowa¢ niedoktadne wyznaczenie punktu P btagd spowodowany opisanym
uproszczeniem jest na tyle maly, iz obiecktywnie akceptowalny. Najwazniejsze jest jak
najdoktadniejsze wyznaczenie punktu P.

Rysunek 50 Wyznaczenie obszaru styku lotki z podiozem dla kamery patrzqcej na linie boczng

Wyznaczenie punktu P

W metodzie zaproponowanej przez autora, do wyznaczenia punktu P, wymagana jest
znajomosci trajektorii lotki oraz szerokos¢ lotki w pikselach (jest ona rézna w zaleznosci od
odlegtosci lotki od kamery). Przyje¢to, ze trajektoria lotki przy podtozu jest linig prostg. Linia,
ktora wyznacza trajektorie oraz szeroko$¢ lotki w pikselach (cecha width [Tabela 3]) wyliczana
jest przez modut sledzacy korek lotki opisany w rozdziale Opis metody zastosowanej do
detekcji lotki. Trajektoria lotki moze zmieni¢ si¢ w momencie odbicia, dlatego tez do

wyznaczenia linii L przyjmowana jest trajektoria, ktorg lotka miata, przed odbiciem. Do
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wyznaczenia linii L wykorzystywane sg wszystkie punkty trajektorii przed odbiciem zwracane

przez traker. Aby dopasowac lini¢ do punktéw trajektorii autor zastosowat metode RANSAC!®
[114].

Bledne wyznaczenie momentu odbicia ma wptyw na wyznaczenie prostej L, a co za tym idzie
I wyznaczenie punktu P. Zastosowany RANSAC w pewien sposob koryguje wplyw blednego
wyznaczenia momentu odbicia na dopasowanie punktéw trajektorii do prostej, ale w
momencie, gdy nie mamy wielu punktow trajektorii 1 oprocz punktéw przed odbiciem
wezmiemy tez punkty po odbiciu to nasza linia L bedzie wyznaczona niedoktadnie. Najwigkszy
problem wystepuje wtedy, gdy algorytm znajdujacy klatke, w ktorej nastapito odbicie o podtoze

pomyli si¢ i znajdzie nie pierwsze, a drugie odbicie.

Punkt P wyznaczany jest jako wspotrzedne piksela obrazu odpowiadajgcemu miejscu, gdzie
rozpoczyna si¢ czarny pasek oddzielajacy piora od korka lotki. Na linii L wyznaczany jest
odcinek M, a nastepnie w celu wyznaczenia punktu P sprawdzany jest kazdy piksel lezacy na
odcinku M. Odcinek M ograniczony jest przez punkty k1 i k2, ktore znajdujg si¢ w odlegtosci
sl kazdy od punktu kO (wyznaczona przez traker pozycja korka), a sl jest szerokoscia lotki -
[Rysunek 47].

Dla kazdego piksela lezacego na odcinku M wyznaczany jest wektor cech opisany w tabeli
[Tabela 17], ktory przekazywany jest jako wejScie do wytrenowanego modelu uczenia
maszynowego. Model zwraca prawdopodobienstwo, z jakim wektor wejsciowy opisuje piksel

bedacy miejscem rozpoczgcia czarnego paska.

Wyznaczenie wektora cech
W ponizszej tabeli przedstawiono sposob wyznaczenia cech dla pojedynczego piksela lezacego

na odcinku M. Przeliczenie pikseli na milimetry jest dokonywane zgodnie ze wzorem:

D,y % 65.0
Dy = ———— (1)

shuttle_width
gdzie:

D, — Przeliczana warto$¢ w pikselach (np. dystans do linii)

65.0 — Stata bgdaca szerokoscig lotki w milimetrach okre$lona przepisami

18 Skrocony opis algorytmu RANSAC znajduje sie w Sfowniczek pojed, punkt 13 na stronie 96
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shuttle_width — Szerokos¢ lotki w pikselach wyznaczona przez traker dla

analizowanej ramki (cecha width [Tabela 3]).

Nazwa Opis

Wielkos¢ gradientu policzona jako

G(n) = IL(Myy(n + 1)) — IL(M,yy(n — 1))

gdzie:
My, - uporzadkowany zbiér wspdtrzednych obrazu (xy)
gradient wyznaczonych na odcinku M utozony w kolejnosci zgodnie z kierunkiem
poruszania sie lotki
n —indeks punktu na w zbiorze My,
IL — intensywnos¢ jasnosci piksela na analizowany obrazie w punkcie
(x,y) w zakresie [0,255]
Wielkos¢ gradientu policzona jako
Go(n) = IL(Myy (1)) — IL(My (n = 1))
gdzie:
My, — uporzadkowany zbiér wspdtrzednych obrazu (xy)
gradient_0

wyznaczonych na odcinku M utozony w kolejnosci zgodnie z kierunkiem
poruszania sie lotki

n —indeks punktu na w zbiorze M,

IL — intensywnos¢ jasnosci piksela na analizowany obrazie w punkcie

(x,y) w zakresie [0,255]

Wielkosé gradientu G, ,-m Wyznaczona jak w przypadku gradient (G) z tg
réznicg, ze dla kazdego analizowanego obrazu jasno$¢ piksela IL zostata
znormalizowana do [0,1] - [IL,orm- Normalizacja min-max

gradient_norm
przeprowadzona dla pikseli ze zbioru M,,,

Gnorm(n) = ILnorm(Mxy(n + 1)) - ILnorm(Mxy(n - 1))

Wielko$¢ gradientu Gy ,,-mWYyznaczona jak w przypadku gradient_0 (G,)

z tg réznicy, ze jasnosé piksela IL zostata znormalizowana do [0,1]

GO norm (Tl) = ILnorm (Mxy (Tl)) - ILnorm (Mxy (n - 1))

gradient_0_norm
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next_local_max_value

Warto$¢ w lokalnym maksimum znajdujacym si¢ w zbiorze My, za
analizowanym punktem obliczona jako:
LMax(n) = abs(G(m + 1)) + abs(G(m — 1))
gdzie:
n —indeks analizowanego punktu w zbiorze M,,,
m — indeks punktu, w ktérym jest lokalne maksimum

m>n

Lokalne minima i maksima wyznaczane sg na podstawie gradientu G —

znajdujg sie w tych punktach, gdzie gradient zmienia znak.

next_local_max_norm_
value

Warto$¢ w lokalnym maksimum znajdujacym si¢ w zbiorze My, za
analizowanym punktem obliczona jako:
LMax(n) = abs(Gporm(m + 1)) + abs(Gporm(m — 1))
gdzie:
n —indeks analizowanego punktu w zbiorze M,,,
m — indeks punktu, w ktérym jest lokalne maksimum

m>n

prev_local_min_value

Wartos¢ w lokalnym minimum znajdujacym sie w zbiorze M, przed
analizowanym punktem obliczona jako:
LMin(n) = abs(G(m + 1)) + abs(G(m — 1))
gdzie:
n —indeks analizowanego punktu w zbiorze My,
m —indeks punktu, w ktéorym jest lokalne minimum

m<n

prev_local_min_norm_v
alue

Wartos¢ w lokalnym minimum znajdujacym sie w zbiorze M, przed
analizowanym punktem obliczona jako:
LMin(n) = abs(Gporm(m + 1)) + abs(Gporm(m — 1))
gdzie:
n —indeks analizowanego punktu w zbiorze M,
m — indeks punktu, w ktérym jest lokalne minimum

m<n

next_local_max_lumino
sity

Wartos$é¢ znormalizowanej intensywnosci jasnosci piksela IL,prm W
pierwszym lokalnym maksimum znajdujagcym si¢ w zbiorze M, za

analizowanym punktem.
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prev_local_min_lumino
sity

Warto$¢ znormalizowane] intensywnosci jasnosci piksela w pierwszym
lokalnym minimum znajdujacym sig w zbiorze M,,, przed analizowanym

punktem.

dist_to_next_max

Dystans w pikselach pomiedzy analizowanym punktem, a punktem
reprezentujacym lokalne maksimum znajdujgcym sie w zbiorze My, za

analizowanym punktem

dist_to_next_max_mm

Dystans w milimetrach pomiedzy analizowanym punktem, a punktem
reprezentujacym lokalne maksimum znajdujacym si¢ w zbiorze My, za

analizowanym punktem

dist_to_prev_min

Dystans w pikselach pomiedzy analizowanym punktem, a punktem
reprezentujacym lokalne minimum znajdujacym sie w zbiorze M., przed

analizowanym punktem

dist_to_prev_min_mm

Dystans w milimetrach pomiedzy analizowanym punktem, a punktem
reprezentujgcym lokalne minimum znajdujgcym si¢ w zbiorze My,, przed

analizowanym punktem

Jesli analizowany punkt znajduje sie w lokalnym minimum to wartos$¢ ta
jest obliczona jako:

LMin(n) = abs(G(n + 1)) + abs(G(n — 1))

local_min gdzie:
n —indeks analizowanego punktu w zbiorze My,
W przeciwnym razie zero
Jesli analizowany punkt znajduje sie w lokalnym minimum to wartos¢ ta
jest obliczona jako:
LMin(n) = abs(Gy(n + 1)) + abs(Gy(n — 1))
local_min_0

gdzie:

n —indeks analizowanego punktu w zbiorze My,

W przeciwnym razie zero
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local_min_norm

Jesli analizowany punkt znajduje sie w lokalnym minimum to wartos$¢ ta
jest obliczona jako:

LMin(n) = abs(Gporm(m + 1)) + abs(Gpprm(n — 1))
gdzie:

n —indeks analizowanego punktu w zbiorze M,,,

W przeciwnym razie zero

local_min_0_norm

Jesli analizowany punkt znajduje sie w lokalnym minimum to wartos$¢ ta
jest obliczona jako:

LMin(n) = abs(Go norm(m + 1)) + abs(Go norm(n — 1))
gdzie:

n —indeks analizowanego punktu w zbiorze M,,,

W przeciwnym razie zero

Jesli analizowany punkt znajduje sie w lokalnym maksimum to wartosc ta
jest obliczona jako:

LMax(n) = abs(G(n+ 1)) + abs(G(n — 1))

local_max gdzie:
n —indeks analizowanego punktu w zbiorze My,
W przeciwnym razie zero
Jesli analizowany punkt znajduje sie w lokalnym maksimum to wartosc¢ ta
jest obliczona jako:
LMax(n) = abs(Gy(n + 1)) + abs(Gy(n — 1))
local_max_0

gdzie:

n —indeks analizowanego punktu w zbiorze M,

W przeciwnym razie zero
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local_max_norm

Jesli analizowany punkt znajduje sie w lokalnym maksimum to wartosc¢ ta
jest obliczona jako:

LMax(n) = abs(Gporm(m + 1)) + abs(Grorm(n — 1))
gdzie:

n —indeks analizowanego punktu w zbiorze M,,,

W przeciwnym razie zero

local_max_0_norm

Jesli analizowany punkt znajduje sie w lokalnym maksimum to wartosc¢ ta
jest obliczona jako:

LMax(n) = abs(Go norm(m + 1)) + abs(Go norm(n — 1))
gdzie:

n —indeks analizowanego punktu w zbiorze M,,,

W przeciwnym razie zero

Srednia jasno$¢ pikseli w zbiorze M,,,

p_avg
p_stdev Odchylenie standardowe jasnosci pikseli w zbiorze My,
p_max Maksymalna jasnos¢ pikseli w zbiorze M,
p_min Minimalna jasnos¢ pikseli w zbiorze M,,,

Jasnos¢ piksela w analizowanym punkcie

I(n) = IL(M,,(n))
gdzie:

luminosity M,, — zbiér wspdtrzednych obrazu (x,y) wyznaczonych na odcinku M

utozony w kolejnosci zgodnie z kierunkiem poruszania sie lotki
n —indeks punktu na w zbiorze M,
IL — intensywnos¢ jasnosci piksela na analizowany obrazie w punkcie

(x,y) w zakresie [0,255]

luminosity_norm

Znormalizowana jasnos$¢ piksela w analizowanym punkcie
Inorm (1) = Inoym (Myy ()
gdzie:
My, — zbiér wspotrzednych obrazu (x,y) wyznaczonych na odcinku M
utozony w kolejnosci zgodnie z kierunkiem poruszania sie lotki
n —indeks punktu na w zbiorze My,
IL,orm — intensywnos$¢ jasnosci piksela na analizowany obrazie w

punkcie (x,y) w zakresie [0,1]
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abs_diff sum_norm

Aby obliczy¢ te ceche w pierwszej kolejnosci wyznaczana jest Srednia
wartosé jasnosci z 10% najjasniejszych (bright_avg) i 5% najciemniejszych
(dark_avg) pikseli ze zbioru M,,,.

Nastepnie wyznaczany jest model jasnosci pikseli w okolicy punktu P.
Model przedstawiono na rysunku [Rysunek 51].

Jest to kernel w ksztatcie krzyza o Srodku w punkcie S. Piksele znajdujace
sie na poziomym ramieniu majg jasno$¢ dark_avg a na pionowym —
bright_avg.

Nastgpnie dla kazdego punktu ze zbioru  M,, obliczamy btad
dopasowania do modelu. Jest to zsumowana absolutna rdznica jasnosci
pomiedzy pikselami kernela, a pikselami obrazu podzielona przez liczbe

punktow kernela. Opisuje to wzor:

s, (abs ( K(k) — IL (ny(k))>)

Diff = ]

gdzie:
K —Kernel
k — k-ty piksel kernela
| — Liczba pikseli w kernelu
Cxy — Wspdtrzedne punktu analizowanego obrazu dla k-tego punktu
kernela

IL — Jasnos¢ piksela w punkcie Cyy

Pionowe ramie kernela.
Dtugosé 52mm
Wartosc¢ bright_avg

Punkt S - srodek kernela

= Poziome ramie kernela

Dtugosé 25mm
Wartos¢ dark_avg

Rysunek 51 Sposob wyznaczenia kernela
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is_min_abs_diff

Warto$¢ 1 dla tych elementéw ze zbioru M,,, dla ktérych cecha

abs_diff_norm ma najnizszg wartosc.

abs_diff_sum_norm_arr
min

Minimalna warto$¢ cechy abs_diff _norm dla analizowanej ramki .

abs_diff_sum_norm_arr
max

Maksymalna wartos¢ cechy abs_diff_norm dla analizowanej ramki.

abs_diff_sum_norm_arr
_mean

Srednia warto$¢ cechy abs_diff _norm dla analizowanej ramki.

abs_diff sum_norm_arr
_std

Odchylenie standardowe cechy abs_diff_norm dla analizowanej ramki.

dist_to_tip_point_norm

Dystans w milimetrach od analizowanego punktu ze zbioru My, do korka

wyznaczonego przez traker.

shuttle_width

Szerokos¢ lotki w pikselach wyznaczona przez traker (cecha width [Tabela

3]).

next_n_avg_luminosity

Srednia jasno$é¢ nastepnych k pikseli. Gdzie k oznacza liczbe pikseli
zawartych w szerokosci czarnego paska (obliczona jako 1/13 szerokosci

lotki w pikselach zwrdconej przez traker)

i=K y/:
Iavg (n) = Zi:?(l(l)

gdzie:
n —indeks analizowanego punktu w zbiorze M,
k — k = (int)shuttle_width/13

k>n

dist_to_black_stripe_en
d

Jak odlegte w pikselach jest nastepne lokalne maksimum od
przewidywanego konca czarnego paska (wyliczonego na podstawie
szerokosci paska).

Warto$¢ zero oznacza, ze nastepne lokalne maksimum powinno by¢

wiasnie w odlegtosci szerokosci paska.

dist_to_black_stripe_en
d_mm

Jak wyzej, tylko w milimetrach

Tabela 17 Sposéb wyznaczenia wektora cech

Sposrod wyznaczonych cech odrzucono te ktore sg silnie ze sobg skorelowane i nie poprawiaja

predykcji modelu. Ostatecznie wybrano 18 cech przedstawionych ponize;j:
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next_local_max_norm_value
prev_local_min_norm_value
next_local_max_luminosity
prev_local_min_luminosity
dist_to_next_max_mm
dist_to_prev_min_mm
gradient_norm
gradient_norm_0
local_min_norm
local_max_norm
local_min_0_norm
local_max_0_norm
luminosity_norm
abs_diff_sum_norm
is_min_abs_diff
dist_to_tip_point_norm
dist_to_black_stripe_end_mm
next_n_avg_luminosity_norm

Wspotczynniki korelacji liniowej Pearsona dla wybranych cech zaprezentowano na rysunku
[Rysunek 52]

-10
next_local_max_norm _value - 0061 02 017 0.067
prev_local_min_norm_value 0.049 0.3 0.043 e 02 0.0062 0.055 0.0088
next_local_max_luminosity - 0088 04 0088 027 23 003 0092 0SS 0.0022 059 08

prev_local_min_luminosity 0.04 -0.036 -0.085 0.015 0.037 0.034

i = E
04 | 008 0079
e ﬂ "

-0.04 -0.014 0.

dist_to_next_ max_mm 0.014 -0.038 0.0064 0.0069

dist_to_prev_min_mm JUGED 0.042 -0.038 0.018 0013 0.01

gradient_norm -SEVEEREEEEE] 0.0087 0. 0.0015 -0.014 013

gradient_0_norm -JEUGEERESKF» 0.036 -0.038 -0.038 0.28 0.12 0.0031 -0.038

local_min_norm X8 -0.038 -0.076 -0.0038 -0.038

local_max_norm -0.03 0.021 -0.033 0.00055 -0.09

local_min_0_norm 0.048 0.09 0.095 0.0041 -0.046

local_max_0_norm 0.038 0.092 -0.08 0.0048 -0.043 0.0056 -0.08

luminosity_norm 0.0062 SNOISS 0.0064 0.13 0.12 0.0064

abs_diff_sum_norm_arr 0.048 0.0 -0.12 8 -0.0¢ 0,021 -0.09 0.03

is_min_abs_diff 0.055 0.0022 0.033  0.095

dist_to_tip_point_norm -0.0038 5 00041 0.0056

dist_to_black_stripe_end_mm 0.079 -0.038 -0.09 -0.046 0.0064

next_n_avg_luminosity_norm 0.091 012 0.04 0.98 1
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Rysunek 52 Wspoiczynniki korelacji liniowej Pearsona dla wybranych cech
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Autor zbadal rowniez, ktore cechy sg majg najwickszy wptyw na predykcje modelu. Cechy
wraz z wartosciami SHAP!® (SHapley Additive exPlanations) [115] zaprezentowano na
rysunku [Rysunek 53]. Cechy sg utozone w kolejnosci od najistotniejszej do tej majacej

najmniejszy wptyw na predykcje.

High
next_n_awvg_luminosity_norm
dist to tip point norm
prev_local min_luminosity
gradient_norm
gradient_0_norm
luMminosity norm
next local max norm_vwvalue

dist_to_prev_min_mm .

=

local_min_norm =

. L

prev_local min_norm_vwvalue %

. s
abs_diff_ sum_norm_arr
dist_to_next_max_mm
is_min_abs_diff
next_local_max_luminosity
local_min_0_norm
local_max_0_norm
local_max_norm
dist_to_black_stripe_end_mm

Low

0.3 —02 -0.1 00 0.1 02 0.3
SHAP value (impact on model output)

Rysunek 53 Wartosci SHAP values dla cech modelu

Trening modelu, wyniki i dyskusja

Zbior filmoéw, na ktorych zarejestrowano odbicie o ziemi¢ zostal podzielony na zbidr
treningowy, walidacyjny i testowy zgodnie z procedurg opisang w rozdziale 3.1 Gromadzenie
danych do eksperymentow. Z kazdego filmu wybrano ramke, w ktdrej nastagpito odbicie o
ziemig. Dla tej ramki, dla kazdego piksela znajdujacego si¢ na odcinku M wyznaczono wektor
cech opisany powyzej. Autor na kazdym takim obrazie zaznaczyt na odcinku M piksel P, ktory

jest w miejscu rozpoczecia sie¢ czarnego paska — [Rysunek 54].

19 Skrocony opis techniki SHAP znajduje sie¢ w Stowniczek pojeé, punkt 14 na stronie 96
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Rysunek 54 Anotacja. Zaznaczenie na linii obrazujgcej trajektorie lotki — L (kolor zielony), piksela gdzie zaczyna si¢ czarny
pasek (kolor czerwony)

Podobnie jak w przypadku trenowania modelu méwiacego o tym, czy w danej ramce nastgpito
odbicie o ziemig, autor przetestowal kilka modeli i wybrat ten dajacy najlepsze rezultaty.
Przetestowane modele i wyniki przedstawiono w tabeli [Tabela 18]. Zbiér danych jest silnie
niezbalansowany — negatywnych (inny piksel niz P) obserwacji jest 98.76% a pozytywnych
(piksel P) 1.24%, dlatego do oceny, ktory model jest najlepszy autor wybrat metryke ballanced

accuracy.
Model Macierz pomytek Wyniki
BalancedBaggingClassifier* precision recall f1-score
0.8
3 False 1.00 0.93 0.96
Balanced True 0.15 0.96 0.26
. g 0.6
Bagglgng §
2 accuracy 0.93
04
Classifier macro avg 0.58 0.95 0.61
' ,, weighted avg .99 .93 .96
balanced accuracy 0.95

0 x;
Predicted label
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BalancedRandompForestClassifier* precision recall f1-score

Balanced I - False 1.00 0.89 0.94
True 0.10 0.96 0.19
Random - 06
%
2 0.89
Forest 2 s accuracy
macro avg 0.55 0.93 0.56
. .
Classifier - weighted avg 9.99 .89 9.93
0 i balanced accuracy 0.93
Predicted label
LogisticRegression* precision recall f1-score
0.8
- False 1.00 0.85 0.92
g .
Lo " True 0.07 0.88 0.13
Logistic - '
- 05
regression 2 accuracy 0.85
0.4
macro avg 0.53 0.86 0.52
1 0.12 0.88 03
weighted avg 0.99 0.85 0.91
0.2
0 1 balanced accuracy 0.86

Predicted label

Tabela 18 Przetestowane modele i ich skutecznosé
macro avg — Srednia arytmetyczna podanych miar dla obu klas
weighted avg - Srednia wazona miar
Autor zoptymalizowat rowniez hyperparametry dla przedstawionych modeli (implementacja z
biblioteki scikit-learn). W tabeli [Tabela 19] przedstawiono wartosci tychze parametrow dla

kazdego z modeli:

Model Hyperparametry

estimator=HistGradientBoostingClassifier (
class_weight='balanced',
learning_rate=0.08158911576437505,
BalancedBaggingClassifier max_iter=381,
min_samples_leaf=13),
n_estimators=194,
sampling_strategy="not minority"

n_estimators = 114,

criterion = 'gini’,

max_depth = 14,

max_features = 'log2’,
BalancedRandomForestClassifier min_samples_leaf = 2,

sampling_strategy = 'majority’,

bootstrap = False,
oob_score = False,
replacement = False
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class_weight="'balanced',

solver='saga',

penalty = 'elasticnet',

tol = 5.343043561755692e-05,

C = 0.813014219912614,

fit_intercept = True,

intercept_scaling = 0.5433414328659414,
max_iter = 1160,

warm_start = False,

11_ratio = 0.9040450235295895

LogisticRegression

Tabela 19 Hyperparametry testowanch modeli

Z punktu widzenia sedziego najistotnicjsza jest odpowiedZ na pytanie czy opracowane
rozwigzanie poprawnie ocenito to czy lotka odbita si¢ w korcie, czy poza nim. Mniej istotne
jest to, czy system myli si¢ 0 5 czy 10 milimetrow. Aby odpowiedzie¢ na to pytanie autor

wykonat dalsze eksperymenty.

Ze zbioru walidacyjnego, dla kazdego nagrania z osobna wybrano ramke, w ktorej nastgpito
odbicie lotki o podtoze. Dla tej ramki autor uzyt wytrenowanego modelu i dla kazdego piksela
na linii M wyliczyt prawdopodobienstwo, ze analizowany piksel jest szukanym pikselem P
(wyznaczajacym rozpoczgcie si¢ czarnego paska okalajacego korek lotki). Dla piksela o
najwyzszym prawdopodobienstwie wyznaczono miejsce odbicia lotki o podloze zgodnie z
metodg opisang w rozdziale Algorytm wyznaczania korka lotki i miejsca odbicia o podioze, a
nastepnie obliczono odlegtos¢ przewidywanego miejsca upadku od zaznaczonego przez
operatora prawdziwego miejsca upadku - d, a takze odlegto$¢ prawdziwego miejsca upadku od
linii — dt i odlegtos¢ przewidywanego miejsca upadku lotki od linii — dp. Odleglosci te
zobrazowano na rysunku [Rysunek 55] — w przypadku idealnej predykcji wartosci d oraz btad
err=abs(dp-dt) wynosza zero. Odlegtos¢ dp jest liczona jako dystans od linii do jednego z
punktow S1 lub S2, w zaleznosci od tego, ktory jest blizszy linii kortu [Rysunek 47, Rysunek
50]. Zweryfikowano tez, czy przewidywane przez model miejsce upadku jest po tej samej
stronie linii co prawdziwe miejsce upadku (czyli czy decyzja systemu IN/OUT zgadza si¢ z
prawda). Blad w pikselach wyznaczenia odleglosci przewidywanego miejsca upadku lotki w

stosunku do prawdziwego przeliczono na milimetry zgodnie ze wzorem (1) ze strony 102.

Miejsce upadku lotki (ground-truth) zostalo zaznaczone przez autora na kazdej wspomnianej

ramce, a nastgpnie zweryfikowane przez kwalifikowanego s¢dziego.
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Rysunek 55 Miejsce upadku lotki wyznaczone przez algorytm (kolor purpurowy) i ground-truth (kolor zoity)

W tabeli [Tabela 20] przedstawiono wyniki dla 3 testowanych modeli. R6znica w biedzie
pomiedzy przewidywanym miejscem upadku, a bledem w wyznaczeniu odleglosci od linii do
miejsca upadku lotki wynika z tego, ze gdy model wyznaczyt miejsce upadku doktadnie
przesunigte wzdtuz linii, to btad odlegtosci od linii jest niezmienny. Takie sytuacje zdarzaja si¢

dla kamer obserwujacych linie boczne.

Sredni btad Srednia euklidesowa

wyznaczenia odlegtosci  odlegtos¢ przewidywanego Za
Model y . & ... & p y. . 8 decyzja

miejsca upadku od linii  od prawdziwego miejsca IN/OUT

— avg(abs(dp — dt)) upadku lotki - d
BalancedBaggingClassifier 6.91 mm 9.41 mm 2.08%
BalancedRandomForestClassifier 7.54 mm 10.98 mm 6.25%
LogisticRegression 9.20 mm 13.56 mm 6.25%

Tabela 20 Skutecznosé decyzji IN/OUT dla analizowanych modeli

Jak wida¢ proponowane rozwigzanie jest skuteczne w 98%. Podczas mistrzostw S$wiata
seniorow — Katowice 2019, autor zweryfikowal skuteczno$¢ decyzji sedziow liniowych. Na
211 przypadkoéw, w ktorych zawodnik nie zgadzat si¢ z decyzja sedziego liniowego i poprosit
0 wideo weryfikacje, w 51 przypadkach sg¢dzia si¢ mylit [Tabela 21]. Wynika z tego, ze
sedziowie liniowi myla si¢ w 24.2% przypadkow. Primo L. iinni [115] zebrali podobne statystyki
podczas olimpiady w Rio de Janeiro, 2016 oraz mistrzostw $wiata w Glasgow, 2017 - sedziowie
pomylili si¢ w 11 z 56 przypadkow (19.6%). Réznica pomiedzy statystykami zebranymi przez
autora, a tymi podanymi w [115] moze wynika¢ z tego, ze podczas zawodoéw W Rio de Janeiro
1 Glasgow sedziowie byli bardziej doswiadczeni oraz tego, ze ci badacze zebrali mniej danych

od autora.
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Decyzja Liczba prosb o weryfikacje

Sedzia podjat poprawng decyzje 160
Btedna decyzja sedziego 51
Razem 211
Ktdra linia byta sprawdzana Jak czesto
Linia boczna 109
Linia tylna 75
Tylna linia serwisowa w deblu 20
Linia serwisowa $rodkowa 7

Tabela 21 Statystyka weryfikacji decyzji sedziéw liniowych
Autor dodatkowo sprawdzit jeszcze to, jak dziata jego rozwigzanie W szczegdlnie trudnych dla
sedziego liniowego przypadkach. Jezeli lotka upada 20 cm od linii, a zawodnik prosi o wideo
weryfikacje, tylko w celach taktycznych, to pomytka sedziego jest mato prawdopodobna, a
takie sytuacje podczas zawodow sie¢ zdarzaja. Dlatego tez autor ze zbioru danych wybrat te
nagrania, w ktorych lotka upada w odlegtosci od linii mniejszej niz jej szeroko$¢ - 4 cm i dla

nich zweryfikowat skuteczno$¢ proponowanego rozwigzania — [Tabela 22].

Sredni btad Srednia odlegto$¢ od Zta
Model wyzn’a\t.:zefn‘::\ przewidywanego do decyzja
odlegtosci miejsca zaznaczonego IN/OUT
upadku od linii miejsca upadku
BalancedBaggingClassifier 6.97 mm 10.55 mm 4.84 %

Tabela 22 Skutecznosé decyzji IN/OUT dla sytuacji, gdy lotka upada w poblizu linii
Autor przeanalizowat przypadki btgdnej decyzji systemu i w tabeli [Tabela 23] zaprezentowat
wybrane sytuacje oraz wskazal przyczyny pomylek. Kolorem zottym zaznaczone zostato
miejsce upadku wskazane przez s¢dziego, kolorem purpurowym miejsce upadku wyznaczone

przez algorytm.
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Lotka znajduje sie daleko od kamery oraz jest mocno rozmazana, przez co czarny pasek jest stabo
widoczny. Algorytm Zle wyznaczyt punkt P — cief rzucony przez lotke zostat pomylony z czarnym

paskiem. Z tego powodu miejsce upadku jest przesuniete i znajduje sie na zewnatrz pola gry.

Niewielkie przesuniecie wynikajace ze ztego wyznaczenia linii L
przez traker.
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Niewielkie przesuniecie wynikajgce ze ztego wyznaczenia linii L
przez traker, ktére nie skutkuje btedng decyzjg IN/OUT.

W tym przypadku wydaje sie, ze sedzia btednie zaznaczyt miejsce upadku. Zdaniem autora lotka
upadta poza polem gry i decyzja systemu - OUT jest poprawna

Tabela 23 Przykiady biednych decyzji IN/OUT systemu. Kolorem zottym zaznaczono miejsce upadku wyznaczone przez
sedziego, a kolorem purpurowym wyznaczone przez system

Poréwnanie zaproponowanej metody z Segment Anything Model
W celu poréwnania wynikow przedstawionych w tabeli [Tabela 22] z wynikami uzyskanymi

za pomocg Uznawanej za state of the art metody SAM, autor wykonat nastgpujacy eksperyment.

Dla kazdego obrazka w zbiorze danych zawierajacego te nagrania, w ktorych lotka upada w
odlegtosci mniejszej niz 4 cm od linii, wyznaczono obszar zainteresowan, ktory zostat

przekazany do SAM w celu wyznaczenia masek segmentaciji.
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Obszar zainteresowan zostal wyznaczony jako kwadrat o srodku w punkcie bedacym pozycja
korka lotki wskazanej przez traker i o boku rownym n-krotno$ci szerokosci lotki zwrocone;j

przez traker. Za n przyjmowano rozne liczby i weryfikowano otrzymane rezultaty.

W wyznaczony obszarze dokonano segmentacji z wykorzystaniem algorytmu SAM. Algorytm
SAM umozliwia generowanie trzech masek na podstawie monitu uzytkownika (np. w danym
obszarze zainteresowan lub we wskazanym punkcie). Na zdjeciach [Rysunek 56]
przedstawiono trzy przyktadowe maski (oznaczone kolorem niebieskim) wygenerowane przez
SAM dla tego samego obrazu wejsciowego. Wybor najlepszej maski zostat dokonany zgodnie

z procedurg opisang ponizej.

W pierwszym kroku usunigto tzw. wyspy — czyli te obszary danej maski, ktore nie sg potaczone
z gtdwnym (o najwigkszej powierzchni) obszarem oraz dziury. Maska przedstawiona na zdjeciu
[Rysunek 56 a)] sktada si¢ z dwoch obszarow, a po usunigciu wysp i dziur jest przedstawiona
na rysunku [Rysunek 57].

Dla kazdej z masek obliczono wspolczynnik Jaccarda (réwniez nazywany w literaturze
anglojezycznej jako Intersection over union - loU zgodnie ze wzorem podanym w rozdziale 6
punkt 4). Jako predykcje przyjeto wygenerowang maske, a jako ground-truth obraz réznicowy.
Dla obrazowanego przyktadu zaprezentowany na rysunku [Rysunek 58 b)]. Ta optymalizacja

ma na celu odrzucenie tych masek, ktore oprocz lotki obejmuja réwniez linie kortu.

Wsrod wszystkich masek zwroconych przez SAM wybrano t¢ o najwyzszej wartosci IoU.

Wartosci loU dla analizowanego przyktadu wynoszg odpowiednio:
maska a) 0,111; b) 0,106; c) 0,108.
Maska a) ma najwyzszg wartos¢ loU i dlatego zostala wybrana jako ta najlepsza.

Opisana procedura ma na celu zoptymalizowanie wynikow jakie mozna uzyska¢ wykorzystujac

SAM.

Kolejnym krokiem bylo wyznaczenie obszaru styku korka lotki z podtozem. Ze wzglgdu na
ustawienie kamer w stosunku do podtoza i linii, mozna przyja¢, ze piksel maski o najwigkszej
wartosci wspotrzednej y (zgodnie z ukladem wspotrzednych zorientowanym tak jak na
[Rysunek 59]) odpowiada punktowi SO z rysunku [Rysunek 47]. Na marginesie, warto
zauwazy¢, ze gdyby wybrano maske c) to punkt SO bylby znacznie przesuniety w dot.

Nastgpnie, W sposob opisany w rozdziale Wyznaczenie miejsca styku lotki z podtozem na stronie
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98, wyznaczono punkty S1 i S2, ktore wyznaczajg linie styku lotki z podtozem — na zdj¢ciu
[Rysunek 58] oznaczong kolorem purpurowym.

b) c)

Rysunek 56 Przykiadowe 3 maski (niebieski kolor) wygenerowane przez SAM dla wskazanego przez uzytkownika obszaru
zainteresowar (zielony kwadrat)

dziura

wyspa

b)

Rysunek 57 Maska segmentacji przed a) i po b) usunigciu wysp i dziur dla maski z rysunku Rysunek 56 a)

®
1

a) b)

Rysunek 58 Zblizenie na upadajqcq lotke a) oraz obraz réznicowy b) utworzony z dwoch sgsiadujgcych klatek zapisu wideo
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Rysunek 59 Wyznaczone miejsce odbicia lotki o podtoze (kolor purpurowy)

Na koniec wykonano jeszcze jeden eksperyment i wyznaczono prostokatny obszar
zainteresowan w taki sposob, ze dalszy (wg wspotrzednej y) bok prostokata jest oddalony o
0.25 szerokosci lotki od wspotrzednej y korka lotki zwrdconej przez traker. Celem takiego
ustawienia obszaru zainteresowan jest objecie jak najmniejszego obszaru lezacego poza
obszarem wyznaczonym przez lotke. Ma to jednak takg wade, Zze obszar zainteresowan moze
nie objac¢ korka lotki - [Rysunek 60]. Wyniki przedstawionego eksperymentu z uwzglednieniem
wplywu wielkosCi obszaru zainteresowan na segmentacj¢ oraz porownanie z proponowang

metodg przedstawiono w tabeli [Tabela 24].

Rysunek 60 Zmniejszenie obszaru zainteresowarn do prostokqta
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Sredni btad Srednia odlegto$¢ od Zta
Model wyznaczenia odlegtosci  przewidywanego do decyzja

miejsca upadku od linii  zaznaczonego miejsca upadku IN/OUT
Proponowana metoda 6.97 mm 10.55 mm 4.84 %
SAM n=2.0 9.49 mm 18.26 mm 16.23 %
SAM n=2.5 9.91 mm 19.27 mm 12.90 %
SAM n=3.0 9.23 mm 17.01 mm 12.90 %
SAM n=3.5 10.15 mm 18.89 mm 12.90 %
SAM n=4.0 14.21 mm 25.58 mm 19.36 %
SAM (obszar 8.32 mm 13.42 mm 9.68 %

prostokatny)

Tabela 24 Poréwnanie skutecznosé¢ proponowanej metody i SAM, dla sytuacji, gdy lotka upada w poblizu linii kortu

Jak wida¢ proponowana przez autora metoda jest istotnie lepsza. Jesli chodzi o btad, to SAM

dla kwadratowego obszaru zainteresowan ma o 2.26mm wickszy btad od proponowanej

metody, czyli przeszto 0 32%. Co ciekawe jesli chodzi o btedng decyzje IN/OUT to mamy tu

prawie 3 krotnie gorszy wynik. Najlepszy wynik daje metoda SAM dla obszaru prostokatnego,

ale i tak ma btad wigkszy 0 przeszto 19% i daje dwukrotnie gorszy wynik jesli chodzi o btedna

decyzje oceny upadku lotki w korcie czy poza nim.

Jesli chodzi o czas to dziatania omawianych metod, to SAM z wykorzystaniem GPU NVidia

RTX 3070Ti dziata $rednio 1064,80 ms, a metoda proponowana przez autora z wykorzystaniem

CPU Intel i9 2.97ms

Proponowana metoda

SAM

Uwagi

lotki

jest

wiersz)

zostat dosé

Pomimo tego ze SAM potaczyt
cze$¢ linii kortu z lotka, to tak
szczesliwie sie ztozyto, ze korek

poprawnie

wysegmentowany i wynik z SAM
lepszy od proponowanej
metody. Lotka jest daleko od
kamery - obrazy po lewej s3
istotnie powiekszone (cate zdjecie
wida¢ w [Tabela 23] — pierwszy
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SAM potgczyt czesé linii z korkiem
lotki. Lotka upada w miejscu w
ktorym jest tgczenie dwdch czesci
maty do badmintona.

Pomimo nadmiernej segmentacji
— maska lotki obejmuje but o
biatej podeszwie, to i tak miejsce
upadku  zostato  wyznaczone
prawidtowo

Obszar zainteresowan nie obijat
catej lotki. SAM potaczyt cien
rzucany przez lotke na linie z
korkiem lotki.

Lotka upadta blisko kamery i jest
dobrze oswietlona, a mimo to
SAM potaczyt lotke z linig boczng i
koncowa

Tabela 25 Przyktady segmentacji lotki przez SAM wraz z oméwieniem i poréwnaniem z proponowang metodq (kolorem
purpurowym zaznaczono przewidywane miejsce upadku lotki, a kolorem zéttym ground-truth
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Najwigksza wada SAM z punktu widzenia badanego problemu jest to, ze czesto taczy lotke i
linie kortu w jeden segment. SAM zadziatla dobrze jes$li ma doktadnie wskazany obszar
zainteresowan. Niestety automatycznie wyznaczony, w procesie detekcji, obszar zainteresowan

zawsze bedzie obarczony pewnym bledem.
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4. Skutecznos¢ zaproponowanego rozwigzania

Zaproponowane rozwigzanie sktada si¢ z 3 gtownych elementow, ktore szczegdtowo zostaty

opisane wczesnie;j.

1. Detekcji 1 $ledzenia lotki.
2. Znajdowania w strumieniu wideo ramki, w ktorej nastgpito odbicie o podtoze.

3. Wyznaczenia miejsca upadku lotki i oceny czy byto ono w polu gry czy poza nim.

Ostatecznym celem zaproponowanego rozwigzania jest decyzja - czy lotka upadta w polu gry

czy poza nim. W tym celu autor przeprowadzit ostateczng weryfikacje.

Po wytrenowaniu i walidacji modeli z uzyciem danych zebranych w réznych halach i w
réznorodnych warunkach o$wietleniowych, autor przeprowadzil ostateczne testy z uzyciem
danych zebranych podczas dwéch turniejéw badmintonowych - Mistrzostw Swiata senioréw W
Katowicach oraz mistrzostw Polski U17 w Glubczycach. Podczas tych turniejow byty
rejestrowane tylko te sytuacje, kiedy zawodnik nie zgadzat si¢ z decyzjg s¢dziego. Z takiego
zbioru danych autor wybrat najtrudniejsze do oceny przez s¢dziow sytuacje — te, gdy lotka
upadata na kort w odlegto$ci mniejszej niz 4 cm od linii. W ten sposob do testow wybrano 62
sekwencje wideo. Dla kazdej sekwencji autor zaznaczyt miejsce upadku lotki i ocenit czy byto
pole czy aut. Anotacje miejsca upadku lotki zostaty zweryfikowane przez kwalifikowanego
sedziego. Przygotowany w ten sposob zbior testowy zostat uzyty do ostatecznej weryfikacji

skutecznos$ci proponowanego rozwigzania.

We wszystkich przypadkach testowych algorytm sledzacy lotke (opisany w rozdziale Detekcja

i sledzenie lotki) poprawnie znajdowat lotke w momencie odbicia o podtoze i przed odbiciem.

Dla kazdej sekwencji wytrenowany model (opisany w rozdziale Wyznaczenie w strumieniu
wideo kluczowej ramki, w ktorej nastgpito odbicie lotki o podioze) wyznaczyt ramke, w ktorej
nastapito odbicie o podtoze - czyli te, dla ktorej prawdopodobienstwo zwrocone przez model

byto najwyzsze.

Dla tej ramki za pomocg modelu opisanego w rozdziale Wyznaczenie miejsca odbicia si¢ lotki
o ziemig w stosunku do referencyjnych linii kortu dla kazdej sekwencji wyznaczono miejsce

odbicia o podtoze i na tej podstawie podjeto decyzje czy lotka upadta w polu gry czy poza nim.

Ostateczne wyniki przedstawiono tabeli [Tabela 26]
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Prawdziwe wartosci
IN ouT
@ IN 33 3
2 3
s 8
2 £ out 1 25
= ©
v =
o
[a
precision recall f1-score 1licznos$é
IN 0.97 0.92 0.94 36
ouT 0.89 0.96 0.93 26
accuracy 0.94 62
macro avg 0.93 0.94 0.93 62
weighted avg 0.94 0.94 0.94 62
Balanced accuracy ©0.94

Tabela 26 Ostateczne wyniki skutecznosci zaproponowanej metody

Jak wida¢ zaproponowane rozwiagzanie myli si¢ w 6%. W porownaniu z sedziami liniowymi,
ktérzy podejmuja btedne decyzje w 20-24% przypadkow (w zaleznosci od do$wiadczenia)

proponowane rozwigzanie jest istotnie skuteczniejsze niz cztowiek.

Jesli chodzi o $redni btad wyznaczenia odlegtosci miejsca upadku od linii, to wyniost on
19.48mm. Jest to wynik znacznie gorszy niz ten ktory zostal osiggniety dla przypadkow, gdy
analizowano doktadnie t¢ ramke, w ktorej nastgpito odbicie o podtoze (patrz [Tabela 20]), a nie
te ramke ktora wskazal model przewidujacy moment odbicia. Zazwyczaj model przewidujacy
moment odbicia robi to doktadnie lub myli si¢ o 1, 2 ramki. Niestety dla zestawu danych
uzytych do testow jest kilka przypadkow, gdzie pomyltka modelu wyznaczajacego moment
odbicia o podtoze byta wieksza niz 2 ramki. W szczego6lnosci w dwoch przypadkach jest bardzo
duza 1 wyniosta odpowiednio 91 1 108 ramek roznicy. Autor przeanalizowal te dwa przypadki.
W jednym przypadku model wyznaczyl ramke¢ wskazujaca odbicie o podloze nie dla
pierwszego, a dla drugiego odbicia. W drugim przypadku pomytka byta spowodowana tym, ze
algorytm zarejestrowal odbicie, lotki, ktore nastgpitlo na korcie obok. Sytuacja ta zostala
zarejestrowana dla kamery obserwujacej linie tylng, podczas turnieju w Ghubczycach, gdzie
odlegtosci pomiedzy kortami byly mniejsze niz te wymagane przepisami. Jesli odrzuci si¢ te
dwa przypadki, to wspomniany btad zmniejsza si¢ do 12.97mm. Jest to mniej niz potowa

szerokosci korka.
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4.1. Weryfikacja wyniku z systemu przez sedziego technicznego

Skuteczno$¢ na poziomie 94% w poréwnaniu ze skuteczno$cig sedziow wydaje si¢
wystarczajagco wysoka, aby zaproponowane rozwigzanie mozna byto wdrozy¢ komercyjnie.
Jednakze zawodnicy, jak i organizacje takie jak BWF (Badminton World Federation), BE
(Badminton Europe) czy chociazby PzBad (Polski zwigzek Badmintona) oczekuja 100%
skuteczno$ci. Dlatego tez autor opracowal dodatkowy haptyczny interfejs do systemu
umozliwiajacy weryfikacj¢ decyzji systemu przez sedziego [Rysunek 61, Rysunek 62]. W
przypadku, gdy sedzia analizujgc zapis wideo w zwolnionym tempie (ramka po ramce)
zauwazy pomytke systemu, to ma mozliwos¢ korekty wyznaczonego miejsca upadku. Dzigki
wyjatkowo wygodnemu interfejsowi [Rysunek 62] weryfikacja zajmuje maksymalnie

kilkanas$cie sekund.

Rysunek 61 Sedziowie testujgcy system podczas jego weryfikacji w trakcie turnieju w Czestochowie
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Rysunek 62 Dotykowy interfejs wraz z unikalnym sposobem przewijania zapisu wideo
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5. Dyskusja i podsumowanie rozprawy

Lotka do badmintona moze osigga¢ predko$¢ przekraczajagca 400 km/h, co czyni te gre
najszybszym ze wszystkich sportow pod wzgledem dynamiki. Niewielki rozmiar korka oraz
zmienna predkosci lotki powoduja, ze sedziom niezwykle trudno jest precyzyjnie ocenic

miejsce upadku lotki na kort.

W ramach doktoratu wdrozeniowego autor podjat si¢ opracowania systemu wspomagajacego
decyzje s¢dziowskie w badmintonie. Opracowanie uzytecznego rozwigzania nie jest zadaniem
banalnym 1 nalezy rozwigza¢ wiele problemoéw naukowych i technicznych, aby takie

rozwigzanie mozna byto wdrozy¢. W niniejszej rozprawie autor doktadnie omoéwit trzy z nich:

e detekcja i $ledzenie lotki,
e wyznaczenie kluczowej ramki, w ktorej nastgpito odbicie o podioze,

e wyznaczenie miejsca odbicia lotki o podtoze.

W poréwnaniu z innymi sportami rozwigzanie przedstawionych problemow badawczych jest

szczegOlne trudne w badmintonie ze wzgledu na:

e Zmienng predkosc lotki. Lotka moze mie¢ przy podtozu predkos¢ 10-krotnie nizsza niz
w momencie uderzenia przez zawodnika. Dla poréwnania: pitka tenisowa traci okoto
potowe swojej predkosci.

e Niestabilng 1 zalezng od wielu czynnikdéw trajektori¢ lotki, podatng na zmiane
spowodowang ruchami powietrza.

e Niewielki rozmiar korka lotki, przeszto dwa razy mniejszy od Srednicy pitki tenisowej
[Rysunek 64].

¢ Bialy kolor lotki, ktory zlewa si¢ z biatymi liniami.

e Rozmycie lotki na rejestrowanym obrazie spowodowane jej ruchem postgpowym i
wirowym.

e Sztuczne o$wietlenie, ktore nie jest tak silne jak naturalne o$wietlenie dzienne i w
zasadzie wykluczajace rejestracje wideo z predkoscia powyzej 200 klatek na sekunde.

e Roéznorodne warunki o$wietleniowe w halach (czgsto wyposazonych w migoczace z
czestotliwoscig SOHz lampy).

e Roéznorodne warunki przestrzenne, czesto zmieniajace si¢ nawet w czasie tego samego

turnieju.
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e Roznorodne dodatkowe obiekty, pojawiajace si¢ w niewielkiej odlegtosci od linii kortu,

takie jak banery reklamowe, kamerzysci, czy tez zawodnicy grajacy na korcie obok.

O tym, ze badany problem jest wyjatkowo trudny, §wiadczy rowniez znikoma liczba publikacji
naukowych omawiajgcych badane przez autora zagadnienia. W szczegdlnosci temat upadku
lotki w korcie lub poza nim podje¢to tylko w jednej znanej autorowi publikacji [78]. Co ciekawe:
zagadnienie lokalizacji pitki wzgledem referencyjnych linii pola gry dla innych dyscyplin
sportowych, takich tenis, pitka nozna, czy tez siatkdwka, rowniez nie jest Szeroko badane przez
innych naukowcow. W liczacej 68 stron publikacji Comprehensive Review of Computer Vision
in Sports: Open Issues, Future Trends and Research Directions [14] autorzy umiescili 292
referencje do publikacji dotyczacych wizji komputerowej w sporcie, ale nie wskazali ani jedne;j
referencji do publikacji poruszajacych temat lokalizacji pitki/lotki w stosunku do
referencyjnych linii pola gry. Stosunkowo duzo jest publikacji dotyczacych metod detekcji 1
$ledzenia pitki lub graczy (gtéwnie wykorzystujacych glebokie sieci neuronowe). Juz to, ze tak

mato jest badan innych naukowcdw, czyni badania autora wyjatkowymi w skali §wiatowe;.

Autor podejrzewa, iz oprocz obiektywnych trudnosci zwigzanych z gromadzeniem danych
podczas zawodoéw sportowych (organizator zawodow musi wyrazi¢ zgode na umieszczenie
sprz¢tu rejestrujacego w hali 1 zapewni¢ badaczom chocby dostep do zasilania oraz dodatkowa
przestrzen w obiekcie), brak zainteresowania badaczy tym tematem wynika rowniez z tego, ze
istniejacy od 20 lat system Hawk-Eye zmonopolizowat rynek oprogramowania
wspomagajacego decyzje sedziowskie. Szalenie trudno jest stworzy¢ konkurencyjne

rozwigzanie do takiego, ktore jest juz rozwijane komercyjnie od 20 lat.

Mimo to autor podjat to wyzwanie, liczac na to, ze dzigki swojemu zaangazowaniu i
wykorzystaniu unikalnej wiedzy domenowej, zdota opracowaé rozwigzanie, ktore bedzie

uzyteczne rynkowo.

Autor, bedac zawodnikiem, dobrze zna §rodowisko badmintonowe, dzigki czemu organizatorzy
turniejow 1 Polski Zwigzek Badmintona przychylnie patrzyli na jego prace i pozwalali na
umieszczanie podczas zawodow sprzetu rejestrujgcego. Wspomniany turniej w Katowicach
trwat 9 dni i przez te 9 dni, codziennie przez 10 godzin, autor znajdowat si¢ w hali i rejestrowat

dane oraz testowal opracowane rozwigzanie.

Dzigki temu autor mial mozliwo$¢ zgromadzenia zrdéznicowanych zapisow wideo 1
przetestowania réznorodnych ustawien sprzetu rejestrujagcego oraz zauwazenia istotnych

ograniczen, majacych wptyw na jego badania. Inni badacze czgsto nie majg takich mozliwosci
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1 zmuszeni sg analizowa¢ zapisy wideo z transmisji telewizyjnych lub rejestrujg dane w

jednorodnych warunkach laboratoryjnych.

Autorowi udalo si¢ opracowac satysfakcjonujace rynek rozwigzanie, co nie oznacza, ze nie jest

ono pozbawione wad i nie ma miejsca na poprawe. Ponizej wypunktowano wady i zalety

opracowanej metody w podziale na cztery kategorie.

1. Ogoélna ocena rozwigzania

> Zalety:

Rozwigzanie efektywne kosztowo.

Dziatajace w czasie rzeczywistym.

Szybki montaz i bezproblemowy transport - nie s3 wymagane kamery nad kortem.
Przetestowane w realnych warunkach turniejowych.

Zintegrowane z systemami live scoring i live streaming.

> Wady:

Doktadno$¢ lokalizacji miejsca upadku lotki niewiele lepsza niz akceptowalna przez
rynek - 13mm.

Nie zawsze wynik jest zgody z prawda i wymaga korekcji przez se¢dziego
technicznego, co wydtuza do kilkunastu sekund czas, po ktorym zawodnicy widza
oficjalng decyzje.

Brak rejestracji catej trajektorii lotki — nie mozna zebra¢ interesujacych statystyk,

takich jak na przyktad $rednia predkos¢ poczatkowa uderzenia konczacego.

2. Detekcja i $ledzenie lotki
> Zalety:

Metoda wyjatkowo efektywna czasowo.

Metoda wyjasnialna — jasne kryteria odrzucania kandydatéw na lotke.

> Wady:

Konieczne wstepne przetwarzanie obrazu i usunigcia efektu migotania.

Jesli traker zacznie §ledzi¢ obiekt, to dopdki go nie zgubi, nie zacznie $ledzi¢ innego
obiektu. Nie zostal rozwigzany problem, ktory powstaje, gdy najpierw pojawia si¢
w polu widzenia kamery lotka z kortu obok i, mimo ze w polu widzenia moze si¢
pojawi¢ po chwili druga lotka (i to z kortu, ktory nas interesuje), to i tak traker nie
rozpocznie jej §ledzenia, dopoki nie przestanie §ledzi¢ pierwszej lotki.

Przyblizona pozycja korka na etapie detekcji. Nie jest ona wystarczajgco doktadna
do wiarygodniej oceny miejsca upadku lotki.
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= Rzucany przez bedaca przy podtozu lotke cien powoduje, ze ma on istotny wplyw
na wyznaczenie pozycji korka przez traker.
= (Czesto lotka jest gubiona zaraz po odbiciu. W opracowanej metodzie nie ma to
wickszego znaczenia, jednakze ogranicza mozliwosci poprawy doktadnosSci
metody.
3. Wyznaczenie kluczowej ramki
> Zalety:
= Szybko$¢ dziatania.
> Wady:
= Silne zatozenia wejsciowe — dziata w potaczeniu z trakerem i korzysta z danych
dostarczonych przez modut §ledzacy lotke. Bledne dane z trakera powoduja bledy
w wyznaczeniu kluczowej ramki.
» Mozliwe bardzo duze pomyltki. W szczegbdlnosci, gdy kluczowa ramka zostanie
wyznaczona w momencie drugiego odbicia si¢ lotki o podtoze.
4. Precyzyjna segmentacja korka lotki i lokalizacja miejsca odbicia w stosunku do linii
kortu
> Zalety:
= Szybko$¢ dziatania.
= Dziata doktadniej niz uznany za state of the art Segment Anything Model.
» Wady:
= Zalezy od danych dostarczonych przez modut detekcji i §ledzenia lotki — trajektorii
i szerokos$ci lotki. Bledne dane z trakera moga powodowac btedng segmentacje
korka lotki.
= (Cien lotki moze powodowa¢ btgdne wyznaczenie korka od lotki
= Metoda zaktada, ze lotka musi mie¢ ciemny pasek oddzielajacy korek od pidr. Tego
nie wymagaja przepisy, ale autor do tej pory nie widziat lotki, ktdra nie mialaby tego
paska. Niestety, jesli lotka nie bedzie posiada¢ czarnego paska, metoda catkowicie

przestanie dziatac.

W ocenie autora oryginalno$¢ opracowanej metody polega na osiagnigciu zadowalajacych
rezultatow (W czasie rzeczywistym) w roznorodnych $rodowiskach przy wykorzystaniu
ograniczonych zasobow sprzgtowych i finansowych. Nie bytoby to mozliwe, gdyby nie

posiadana przez autora wiedza domenowa.
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W zwigzku z coraz wigkszg §wiadomoscia widzoéw 1 zawodnikéw, jakie sa mozliwosci
wizyjnych systemow komputerowych, oczekuje sie, ze systemy wspomagajace decyzje
sedziowskie beda coraz powszechniej stosowane podczas kazdego turnieju, a nie tylko w czasie
najwickszych imprez. Aby bylo to osiggalne, muszg one by¢ mozliwie przystepne. Oznacza to
umiarkowany koszt oraz tatwo$¢ montazu i transportu, co zapewnia opracowane przez autora

rozwigzanie.

Udoskonalenie metody wymaga dalszych badan. W szczego6lnosci warto zbada¢ najnowsze
modele sieci neuronowych. Coraz tanszy 1 wydajniejszy sprzet oraz coraz wigksze mozliwosci
sieci neuronowych powoduja, ze w niedtlugiej przysziosci metody bazujace na sieciach
neuronowych moga dziata¢ doktadniej i rownie efektywnie czasowo, jak metoda opracowana

przez autora.

Na zakonczenie autor chciatby poruszy¢ temat certyfikacji systemdéw wspomagajacych decyzje
sedziowskie przez zwigzki sportowe. Rozwigzanie opracowane przez autora wspolnie z panem
Nowiszem zostato certyfikowane przez Polski Zwigzek Badmintona oraz zaakceptowane przez
Swiatowg organizacje badmintona (BWF), ale w ocenie autora procedura, ktéra kierowat sie

PzBad i BWF pozostawia wiele do zyczenia.

Procedura weryfikacji systemu przez przedstawicieli BWF miala miejsce podczas turnieju
Yonex Polish Open w Czgstochowie. Polegata ona na tym, ze wyznaczeni sedziowie korzystali
systemu podczas zawodow ,,w cieniu”. Zawodnicy nie mieli mozliwo$ci poproszenia o wideo
weryfikacje, ale sedziowie pracujacy ,,w cieniu” weryfikowali decyzj¢ s¢dzidw liniowych,
porownujac ja z decyzja systemu i analizujgc zapis losowo wybranych nagran wideo, oceniali
skuteczno$¢ weryfikowanego rozwigzania. Autor musi uczciwie przyznaé, ze taka procedura
nie jest obiektywna, a decyzja o dopuszczeniu do uzytku podczas zawodow systemu
wspomagajacego sedziow (takiego jak opisany w tej rozprawie czy tez podobnego0), zalezy

tylko od pisemnej rekomendacji sedziow, a nie od mierzalnych wskaznikow.

Brak oficjalnej procedury weryfikacyjnej powoduje, ze dostawcy takich systeméw nie moga
rzetelnie porowna¢ swoich rozwigzan. Skutkuje to rowniez tym, ze trudno jest podwazyc
podejmowane przez oficjeli zwigzkow sportowych decyzje o dopuszczeniu rozwigzania do
uzytku podczas zawodow. Majac na uwadze brak oficjalnych wytycznych, autor,
przeprowadzajgc swoje badania, korzystal z wiasnych zbioréw danych, a eksperymenty

przeprowadzil zgodnie z ogolnie przyjetymi standardami i swoja najlepsza wiedza.
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Warto nadmienié¢, ze Swiatowa Federacja Tenisa (ITF) udostepnia na swojej stronie
internetowe]j niezmienna od 2020 roku oficjalng procedure ewaluacyjna takich systemow [117],
ale procedura ta nie méwi, jak mierzy¢ doktadno$¢ systemu. W celu ewaluacji procedura
zaktada uzycie kamer szybkoklatowych - “high-speed video cameras are used as the sole and
definitive method by which accuracy is established. The “mark” left on the court surface

following impact is used only to aid in the selection of impacts to analyze”.

Zgodnie z tymi wytycznymi, autor rowniez uzyt zapisu wideo z kamer szybkoklatkowych do
weryfikacji skutecznosci systemu, a nie badat sladu odbicia na podtozu, na ktorym taki slad

bytby widoczny - na przyktad na rozsypanym proszku.

Z powodu braku oficjalnych zbioré6w danych (zatwierdzonych i udostepnionych przez
organizacje sportowe) trudno jest oceni¢, czy wskazana przez autora doktadnos$¢ jest lepsza
badz tez gorsza niz doktadno$¢ rozwigzan istniejacych juz na rynku. Co wigcej - firmy, ktore
maja w swojej ofercie takie systemy, nie udostgpniajg zadnych testowych zbioré6w danych, ani
tez sposobu obliczenia mierzalnych wskaznikow. Autorowi udato si¢ dotrze¢ jedynie do
marketingowej informacji z firmy Hawk-Eye, ze ich system lokalizacji miejsca odbicia pitki w
tenisie ma sredni btad na poziomie 3.6mm. Wspomniana firma nie udostepnia takiej informacji
w przypadku badmintona. Wedtug autora ze wzgledu na to, iz korek lotki jest znacznie mniejszy
niz pitka do tenisa [Rysunek 64] oraz to, ze lotka jest biata i zlewa si¢ z biatymi liniami, a pitka
do tenisa jest zielona i wyraznie odcina si¢ od linii, problem oceny, czy lotka upadta w polu
gry, czy poza nim, jest duzo trudniejszy niz ocena, czy pitka tenisowa odbita si¢ w korcie czy
poza nim. Nie bez znaczenia jest tez to, ze tenisisci w momencie odbicia pitki o kort, sg w
znacznie wigkszej odlegtosci od niej niz badmintonisci od lotki. Brak dodatkowych obiektow

na korcie tenisowym rowniez znacznie utatwia segmentacje pitki tenisowe;.

Najdtuzej dostgpnym na rynku systemem elektronicznej oceny upadku pitki w polu gry badz
poza nim jest system firmy Hawk-Eye, ktory od 2024 roku zastgpit s¢dziéw liniowych na
najwiekszych turniejach tenisowych rozgrywanych na nawierzchni twardej. Interesujace jest
to, Ze wspomniany system nie jest uzywany na maczce. Na tej nawierzchni w przypadku

watpliwosci sgdzia po prostu sprawdza $lad odbicia pitki.

Wedhug autora obecne rozwigzania, jakkolwiek sa skuteczniejsze w podejmowaniu decyzji
IN/OUT niz ludzie, to nie sg skuteczne w 100% [100, 102]. Dodatkowo autor pragnie zwrocié
uwage, ze decyzja systemu jest prezentowana publiczno$ci w postaci komputerowej animacji,

a nie jako prawdziwy zapis wideo. Ma to podstawowg zalete - nawet jesli decyzja systemu jest
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btedna, to zawodnicy z nig nie dyskutuja, gdyz nie majg referencyjnego zapisu wideo ani §ladu

na korcie.

W przypadku tenisa wspomniany system Hawk-Eye prezentuje decyzje IN/OUT od razu, a w
przypadku badmintona - decyzja jest prezentowana po kilkunastu sekundach. Autor uwaza, ze
w badmintonie decyzja systemu Hawk-Eye jest rowniez weryfikowana przez oddelegowanego
sedziego technicznego. Przyktadowo: podczas meczu Caroline Marin w 1/8 finatu igrzysk w
Paryzu 2024 na decyzje systemu widzowie musieli czeka¢ az 45 sekund. Autor na podstawie
zapisow wideo 16 meczow badmintona, rozegranych podczas Mistrzostw Swiata z 2021 roku,
obliczyt $redni czas, jaki potrzebny byt na prezentacj¢ IN/OUT systemu Hawk-Eye (18,00 s) i
poréwnal to ze $rednim czasem, jaki byl potrzebny na prezentacje wyniku z systemu

opracowanego poprzez autora (18,43 s).

Opracowane rozwigzanie, ze wzgledu na brak kamer nad kortem, potrzebuje mniej sprzetu i
okablowania niz wspomniany Hawk-Eye [118], a wszystko, co jest potrzebne do instalacji

systemu na korcie, miesci si¢ w bagazniku wigkszego samochodu osobowego [Rysunek 63].

Squash Ball Badminton Shuttlecock Tennis Ball

Rysunek 64 Poréwnanie wielkosci lotki z pitkq do tenisa i squash?®

20 7rédto: https://iwww.dimensions.com/element/badminton-shuttlecock
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Opracowana metoda od samego poczatku byta tworzona z mysla o badmintonie. Z tego tez
powodu nie moze zosta¢ bezposrednio wykorzystana w innych dyscyplinach sportu.
Uogolnienie metody na inne dyscypliny sportu wymaga zmian w algorytmach (dopasowanie
warto$ci progowych, zmiana zestawu wyliczanych cech dla modeli) oraz zebraniu nowego
zbioru danych do testow. Jednakze pewna cz¢s¢ bibliotek, ktore powstaty podczas tworzenia
oprogramowania, moze zosta¢ wykorzystana, np. interfejs do kamer rejestrujacych dane,
biblioteka usuwajaca efekt migotania oswietlenia, rownolegte przetwarzanie strumienia wideo

z wielu kamer.

Kolejne kroki, ktore wykonuje oprogramowanie, wspomagajace s¢dziow liniowych w sportach,
gdzie mamy pitk¢ i ograniczone pole gry, sa w ogolnosci takie same, aczkolwiek ze wzgledu
na rozne specyfiki poszczegolnych gier, w detalach beda sie rozni¢. Przyktadowo: pitka do
siatkowki, w przeciwienstwie do lotki, ulega mocnym odksztatceniom w momencie odbicia o
parkiet i ta jej wlasciwo$¢ musi zosta¢ uwzgledniona podczas opracowywania algorytmow

oceniajacych, czy pitka byta w polu gry, czy poza nim.

Podsumowujac: autor ma nadzieje, ze przeprowadzone przez niego badania przyczynig si¢ do
popularyzacji systemow wspomagania decyzji sedziowskich w jego ulubionej dyscyplinie

sportowej, a zwigzki sportowe opracujg obiektywne procedury certyfikacji takich systemow.
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6. Slowniczek pojec

1.

System challenge w sporcie to mechanizm, ktory pozwala zawodnikom lub druzynom
na zgloszenie watpliwosci co do decyzji sedziowskiej i poproszenie o jej ponowne
rozpatrzenie z wykorzystaniem technologii wspomagajacej. Zwykle system ten jest
wspomagany przez powtorki wideo, lub zaawansowane systemy komputerowe
analizujgce a decyzja sedziego moze by¢ zmieniona, jesli analiza technologiczna
wykaze, ze doszto do bledu.

Erozja to jedna z podstawowych operacji morfologicznych, stosowana gtownie do
przetwarzania obrazoéw binarnych. Erozja powoduje "kurczenie" si¢ obiektéow w
obrazie, co oznacza zmniejszanie rozmiaru biatych obszaréw na obrazie binarnym.
Oblicza lokalne minimum na obszarze danego jadra. Erozja podczas przesuwaniu jadra
(elementu strukturalnego o zadanej wielko$ci) po obrazie oblicza minimalng warto$¢ z
pikseli naktadajacych si¢ na jadro i zastepuje analizowany piksel obrazu ta wartoscia.
Deskryptor - Zestaw cech, ktore reprezentuja obiekt lub dane. Deskryptory sg uzywane
do opisywania i poroéwnywania obiektow, umozliwiajac ich identyfikacje lub
klasyfikacjeg.

loU - Intersection over Union - miara uzywana do oceny jakosci modeli
segmentacyjnych i detekcyjnych w zadaniach zwigzanych z wizja komputerowg. loU
mierzy, jak dobrze wykryty obiekt (tzw. predykcja) pokrywa si¢ z rzeczywistym
obiektem (tzw. ground truth).

IoU jest obliczane jako stosunek pola wspolnego czgsci wykrytej przez model

(Intersection) do pola sumy obu obszarow (Union) zgodnie ze wzorem:

(AN B)
(AU B)

IoU(A,B) =

Gdzie A — Obszar zajmowany przez predykcje,
B — Obszar zajmowany przez ground truth

Wynik loU miesci si¢ w przedziale od 0 do 1, gdzie:
loU = 0: Brak pokrycia predykcji z rzeczywistym obiektem.

loU = 1: Idealne pokrycie predykcji z rzeczywistym obiektem.
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Mozna to przedstawi¢ graficznie:

B B
(=g u)

I0OU=

Rysunek 65 Graficzna reprezentacja miary 10U

6. Confusion matrix (macierz pomylek) - narzedzie uzywane do oceny wydajnosci

modeli klasyfikacyjnych. Jest to tabela, ktora wizualizuje, jak dobrze model klasyfikuje

probki do odpowiednich klas, porownujac przewidywane Klasy z rzeczywistymi

klasami.

Macierz pomylek sktada si¢ z czterech podstawowych elementow:

1.

True Positives (TP) — Liczba probek poprawnie zaklasyfikowanych do danej
klasy.

True Negatives (TN) — Liczba probek, ktoére model poprawnie zaklasyfikowat
jako nie nalezace do danej klasy.

False Positives (FP) — Liczba probek blednie zaklasyfikowanych jako nalezace
do danej klasy (tzw. fatszywe alarmy).

False Negatives (FN) — Liczba probek, ktore model btednie sklasyfikowat jako

nie nalezace do danej klasy, mimo ze faktycznie do niej nalezaty.

Przyktad macierzy pomytek dla klasyfikacji binarnej:

Predykcja: Predykcja:
Pozytywna Negatywna

Rzeczywista: True Positive (TP) False Negative (FN)
Pozytywna

Rzeczywista: False Positive (FP) True Negative (TN)
Negatywna

21 7r6dto: https:/machinelearningspace.com/intersection-over-union-iou-a-comprehensive-guide/
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7. Precision (precyzja) - miara uzywana w klasyfikacji binarnej i wicloklasowej
okreslajaca, jaki procent z wykrytych przez model pozytywnych przyktadoéw jest
faktycznie poprawny. Precision skupia si¢ na tym, jak trafne sa pozytywne predykcje

modelu, czyli ile z nich rzeczywiscie nalezy do klasy pozytywnej. Wyraza si¢ wzorem:

True Positives (TP)
True Positives (TP) + False Positives (FP)

Precision =

Gdzie:

True Positives (TP) — liczba prawidtowo wykrytych pozytywnych
przyktadow.

False Positives (FP) — liczba przyktadow blednie zaklasyfikowanych
jako pozytywne.

Wysoka precyzja oznacza, ze model generuje niewiele falszywych alarmow (False
Positives), czyli wigkszo$¢ predykceji pozytywnych jest trafna. Niska precyzja wskazuje,
ze wiele przyktadow zaklasyfikowanych jako pozytywne w rzeczywistosci do tej klasy

nie nalezy.

Precision jest szczegélnie wazne w sytuacjach, gdy falszywe alarmy maja duze

konsekwencje, np. w diagnostyce medycznej.

8. Recall (czulo$¢) - miara uzywana w klasyfikacji, ktora okresla, jaki procent
rzeczywistych pozytywnych przyktadow zostal poprawnie wykryty przez model.
Wyraza si¢ wzorem:

True Positives (TP)
True Positives (TP) + False Negatives (FN)

Recall =

Recall mierzy, jak dobrze model potrafi wykry¢ wszystkie przypadki nalezace do klasy
pozytywnej.

9. F1 (Fl1-score) - miara uzywana do oceny jakosci modeli klasyfikacyjnych, ktora
pokazuje, jak doktadnie model oddaje wyniki, majgce znaczenie. Nalezy zauwazy¢, ze
im bardziej niezrownowazony jest zestaw danych, tym nizszy moze by¢ wynik F1,
nawet przy tej samej doktadnosci ogélnej. Miara ta jest szczeg6lnie przydatna, gdy
mamy do czynienia z niezrdwnowazonymi danymi, gdzie jedna klasa wystepuje
znacznie czg$ciej niz inne. F1-score balansuje migdzy precyzja a czutos$cia, dajac ogdlng

miar¢ wydajnosci modelu 1 wyraza si¢ wzorem:
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11.

12.

Precision * Recall
F1=2

Precision + Recall

Accuracy (dokladno$¢) - miara wydajnosci modeli klasyfikacyjnych, okreslajgca
procent poprawnych przewidywan wzgledem wszystkich przewidywan modelu. Mowi
ona, jak czesto model klasyfikuje poprawnie zarowno pozytywne, jak i negatywne
przyktady i wyraza si¢ wzorem:
Accuracy = e+ In
TP +TN + FP +FN

Accuracy moze by¢ mylace w przypadku niezrownowazonych zbioréw danych, gdzie
jedna klasa jest znacznie liczniejsza niz inne. W takich sytuacjach model moze osiggac
wysoka doktadnos¢, ale niekoniecznie dobrze radzi¢ sobie z klasg mniejszosciowa. W

takich przypadkach lepiej jest uzy¢ innych miar: F1, ballanced accuracy

Ballanced accuracy - miara wydajnosci modeli klasyfikacyjnych, szczegdlnie
przydatna w przypadku niezrownowazonych zbiordw danych, gdzie jedna klasa jest
znacznie liczniejsza od innych. Miara accuracy (doktadnos$¢) moze by¢ mylaca, gdy
jedna klasa dominuje, dlatego balanced accuracy koryguje t¢ nierownos¢, biorge pod
uwage doktadnos¢ dla kazdej klasy oddzielnie. Dla klasyfikacji binarnej wyraza si¢

wzorem:

1 TP TN
Balanced accuracy = E(TP TN T TN T FP)

Mean average precision (mAP) - miara wydajnosci modeli wykrywania obiektow i
segmentacji obrazow, czgsto uzywana w zadaniach zwigzanych z wizjg komputerowa.
Ocena ta jest kombinacjg dwoch aspektow: precyzji (ang. precision ) oraz czulosci
(ang. recall), gdzie precyzja mierzy, jaki odsetek wykry¢ jest prawidlowy, a czuto$¢
okresla, jaki odsetek rzeczywistych obiektow zostat wykryty. mAP oblicza si¢ poprzez
znalezienie $redniej precyzji (average precision - AP) dla kazdej klasy i nastepnie

usrednienie jej dla zadanej liczby klas zgodnie z wzorem:

1 k=n
n
k=1

Gdzie:
n — liczba klas,

APy — Srednia precyzja dla klasy k
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13.

Average Precision (AP) to miara, ktora ocenia jako$¢ modelu wykrywania obiektow
na podstawie krzywej precyzji i czulo$ci. Jest to zintegrowana warto$¢ z tej krzywej,
ktora mierzy, jak dobrze model wykrywa obiekty, bioragc pod uwage rézne progi
decyzyjne (proég decyzyjny oznacza wartos¢ predykcji powyzej, ktorej model
przydzielit probke do danej klasy — zazwyczaj 0.5). AP ocenia zaréwno liczbe
poprawnych wykry¢ (precyzja), jak i zdolno$¢ modelu do wykrywania wszystkich
obiektow (czutos¢). Wartos¢ AP mozna obliczy¢ jako pole pod krzywa precyzji i
czutosci (PR-AUC). Dla zestawu progdéw decyzyjnych czutosci R i odpowiadajacych
im precyzji P, AP jest definiowane jako:
1
AP = f P(R)dR
0
W praktyce, zamiast ciagglej krzywej, oblicza si¢ sume wartosci precyzji dla réznych
warto$ci czulo$ci. AP jest usredniang wartoscia precyzji dla roznych poziomow
czutosci, zwykle mierzonych w punktach z zestawu progéw decyzyjnych.
Jako$¢ modeli segmentacji obiektow podaje w potaczeniu mAP i loU - mAP@IoU,
podajac $rednig precyzje modelu obliczong przy zastosowaniu progu Intersection over
Union (loV). Przyktadowo mAP@0.50 = 0.77 oznacza, ze model uzyskat mAP rowne
0.77 przy zatozeniu loU o wartosci 0.50 i wyzszej. Prog 0.50 oznacza, ze wykrycie
obiektu przez model zostanie uznane za poprawne, jesli obszar predykcji pokrywa co
najmniej 50% rzeczywistego obszaru obiektu.
RANSAC (Random Sample Consensus) - algorytm, stuzacy do dopasowania modelu
do danych z duzg ilo$cig szumoéw lub warto$ci odstajacych (outliers). Jest powszechnie
uzywany w takich zadaniach jak estymacja parametrow modelu, dopasowanie linii,
plaszczyzn, czy homografii w obrazach. RANSAC dziata iteracyjnie 1 polega na
probkowaniu danych w celu znalezienia najlepszego modelu. Kolejne kroki algorytmu
sa nastepujace:
1. Losowy wybor probek.
Losowo wybierana jest minimalna liczba punktéw danych potrzebnych do
estymacji parametrow modelu. Dla dopasowania linii wystarcza dwa punkty, dla

dopasowania ptaszczyzny trzy punkty itp.

2. Dopasowanie modelu.
Na podstawie wybranych punktow estymowane sa parametry modelu. Model

ten jest dopasowywany wylacznie na podstawie losowo wybranych probek.
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3. Ocena zgodnosci modelu (Consensus).
Sprawdzane jest, ile punktéw z catego zbioru danych pasuje do tego modelu,
czyli znajduje si¢ "blisko" modelu (zgodnie z ustalonym progiem tolerancji na
odlegtos¢). Punkty te sg nazywane inlierami, a punkty, ktore nic pasujg, sa

outlierami.

4. lteracyjne powtarzanie krokow 1-3.
Kroki 1-3 sa powtarzane wiclokrotnie (przez ustalong liczbe iteracji). Za

kazdym razem algorytm losuje nowy zestaw probek i dopasowuje model.

5. Wybor najlepszego modelu.
Sposrod wszystkich iteracji wybierany jest model, ktory ma najwigksza liczbe
inlieréw (punktow zgodnych z modelem). Ten model uznaje si¢ za ostateczne

rozwigzanie.

6. Estymacja koncowa.
Na podstawie wszystkich inlieréw wybranego modelu, przeprowadza si¢

ostateczne dopasowanie modelu.

14. SHAP - technika wyjasnialno$ci modeli uczenia maszynowego, ktéra opiera si¢ na
wartosciach Shapleya. Wartosci te pochodza z teorii gier kooperacyjnych 1 stuzg do
wyjasnienia wptywu poszczegdlnych zmiennych na wynik modelu predykcyjnego.
Glowna idea polega na obliczeniu, jak duzy wplyw na ostateczng predykcje miataby

kazda z nich, gdybysmy ja stopniowo dodawali do modelu.

SHAP tworzy wszystkie mozliwe kombinacje cech 1 oblicza zmiany w przewidywanej
warto$ci, gdy dana cecha jest dodawana do podzbioru innych cech. Na podstawie tych

kombinacji oblicza, jak bardzo dana cecha przyczynia si¢ do zmiany wyniku predykcji.

Warto$ci Shapleya sg idealne do wyjasniania modeli uczenia maszynowego, poniewaz
odpowiadaja na pytanie: Jaki jest wptyw kazdej cechy na wynik predykcji? SHAP laczy
te wartosci z metodami interpretacji modeli 1 pozwala na wyjasnianie zlozonych modeli

takich jak XGBoost, SVM i sieci neuronowe.

Gltowng wada SHAP jest wysoki koszt obliczeniowy zwtlaszcza dla duzych zbiorow
danych 1 modeli o wielu cechach. Jednak dostepne sg przyblizone metody, takie jak
Kernel SHAP 1 Tree SHAP, ktore znaczaco obnizajg koszt obliczeniowy.
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